Previous |  Up |  Next

Article

Title: $\omega $--weighted holomorphic Besov spaces on the unit ball in $C^n$ (English)
Author: Harutyunyan, A. V.
Author: Lusky, W.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 1
Year: 2011
Pages: 37-56
Summary lang: English
.
Category: math
.
Summary: The $\omega$-weighted Besov spaces of holomorphic functions on the unit ball $B^n$ in $C^n$ are introduced as follows. Given a function $\omega $ of regular variation and $0< p< \infty $, a function $f$ holomorphic in $B^n$ is said to belong to the Besov space $B_p(\omega)$ if $$ \Vert f\Vert^p_{B_p(\omega )}=\int_{B^n} (1-|z|^2)^p|Df(z)|^p \frac{\omega(1-|z|)}{(1-|z|^2)^{n+1}}\,d\nu(z)< +\infty , $$ where $d\nu (z)$ is the volume measure on $B^n$ and $D$ stands for the fractional derivative of $f$. The holomorphic Besov space is described in the terms of the corresponding $L_p(\omega )$ space. Some projection theorems and theorems on existence of the inversions of these projections are proved. Also, explicit descriptions of the duals of the considered Besov spaces are given. (English)
Keyword: weighted Besov spaces
Keyword: unit ball
Keyword: projection
MSC: 32C37
MSC: 46E15
MSC: 46T25
MSC: 47B38
idZBL: Zbl 1240.32017
idMR: MR2828371
.
Date available: 2011-03-08T17:35:57Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141427
.
Reference: [1] Arazy J., Fisher S., Peetre J.: Mobius invariant function spaces.J. Reine Angew. Math. 363 (1985), 110–145. MR 0814017
Reference: [2] Blasco O.: Multipliers on weighted Besov spaces of analytic functions.Contemp. Math. 144 (1993), 23–33. Zbl 0838.42002, MR 1209444, 10.1090/conm/144/1209444
Reference: [3] Djrbashian A., Shamoyan F.: Topics in the Theory of $A^p_{\alpha }$ spaces.Teubner Texts in Math., 105, Teubner, Leipzig, 1988. Zbl 0667.30032, MR 1021691
Reference: [4] Harutyunyan A., Lusky W.: Holomorphic Bloch space on the unit ball in $C^n$.Comment. Math. Univ. Carolin. 50 (2009), no. 4, 549–562. MR 2583132
Reference: [5] Harutyunyan A., Lusky W.: $\omega-$ weighted holomorphic Besov spaces on polydiscs.J. Funct. Spaces Appl.(to appear). MR 2796723
Reference: [6] Harutyunyan A., Lusky W.: Duals of holomorphic Besov spaces on the polydiscs and diagonal mappings.J. Contemp. Math. Anal. 45 (2010), no. 3, 128–135. MR 2760596, 10.3103/S1068362310030027
Reference: [7] Harutyunyan A.V.: Bloch spaces of holomorphic functions in the polydisc.J. Funct. Spaces Appl. 5 (2007), no. 3, 213–230. MR 2352842, 10.1155/2007/353959
Reference: [8] Karapetyants A.N., Kodzoeva F.D.: Analytic weigthed Besov spaces on the unit disc.Proc. A. Razmadze Math.Inst. 139 (2005), 125–127. MR 2202885
Reference: [9] Nowak M.: Bloch and Möbius invariant Besov spaces on the unit ball of $\mathbb C^n$.Complex Variables Theory Appl. 44 (2001), 1–12. MR 1826712, 10.1080/17476930108815339
Reference: [10] Li S., Stevic S.: Some characterizations of the Besov space and the $\alpha $-Bloch space.J. Math. Anal. Appl. 346 (2008), 262–273. Zbl 1156.32002, MR 2428290, 10.1016/j.jmaa.2008.05.044
Reference: [11] Li S., Wulan H.: Besov space on the unit ball of $\mathbb C^n$.Indian J. Math. 48 (2006), no. 2, 177–186. MR 2251898
Reference: [12] Rudin W.: Function Theory in Unit Ball of $C^n$.Springer, New York-Berlin, 1980. MR 0601594
Reference: [13] Seneta E.: Functions of Regular Variation.(Russian), Nauka, Moscow, 1985.
Reference: [14] Stroethoff K.: Besov type characterisations for the Bloch space.Bull. Australian Math. Soc. 39 (1989), 405–420. MR 0995138, 10.1017/S0004972700003324
Reference: [15] Zhu K.: Spaces of Holomorphic Functions in the Unit Ball.Graduatre Texts in Mathematics, 226, Springer, New York, 2005. Zbl 1067.32005, MR 2115155
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-1_4.pdf 292.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo