Title:
|
Berezin-Weyl quantization for Cartan motion groups (English) |
Author:
|
Cahen, Benjamin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
127-137 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190]. (English) |
Keyword:
|
semidirect product |
Keyword:
|
Cartan motion group |
Keyword:
|
unitary representation |
Keyword:
|
semisimple Lie group |
Keyword:
|
symplectomorphism |
Keyword:
|
coadjoint orbit |
Keyword:
|
Weyl quantization |
Keyword:
|
Berezin quantization |
MSC:
|
22E15 |
MSC:
|
22E45 |
MSC:
|
22E46 |
MSC:
|
22E70 |
MSC:
|
81R05 |
MSC:
|
81S10 |
idZBL:
|
Zbl 1240.22010 |
idMR:
|
MR2828363 |
. |
Date available:
|
2011-03-08T17:43:11Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141432 |
. |
Reference:
|
[1] Ali S.T., Engliš M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, 10.1142/S0129055X05002376 |
Reference:
|
[2] Berezin F.A.: Quantization.Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175. Zbl 0976.83531, MR 0395610 |
Reference:
|
[3] Cahen B.: Deformation program for principal series representations.Lett. Math. Phys. 36 (1996), 65–75. Zbl 0843.22020, MR 1371298, 10.1007/BF00403252 |
Reference:
|
[4] Cahen B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé.C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806. Zbl 0883.22016, MR 1483721, 10.1016/S0764-4442(97)80063-8 |
Reference:
|
[5] Cahen B.: Contractions of $SU(1,n)$ and $SU(n+1)$ via Berezin quantization.J. Anal. Math. 97 (2005), 83–102. MR 2274974, 10.1007/BF02807403 |
Reference:
|
[6] Cahen B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005 |
Reference:
|
[7] Cahen B.: Weyl quantization for principal series.Beiträge Algebra Geom. 48 (2007), no. 1, 175–190. Zbl 1134.22010, MR 2326408 |
Reference:
|
[8] Cahen B.: Contraction of compact semisimple Lie groups via Berezin quantization.Illinois J. Math. 53 (2009), no. 1, 265–288. Zbl 1185.22008, MR 2584946 |
Reference:
|
[9] Cahen B.: Contraction of discrete series via Berezin quantization.J. Lie Theory 19 (2009), 291–310. Zbl 1185.22007, MR 2572131 |
Reference:
|
[10] Cahen B.: Weyl quantization for the semi-direct product of a compact Lie group and a vector space.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347. MR 2573408 |
Reference:
|
[11] B. Cahen: A contraction of the principal series by Berezin-Weyl quantization.Univ. Metz, preprint, 2010. MR 2682458 |
Reference:
|
[12] Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds I. Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y |
Reference:
|
[13] Cotton P., Dooley A.H.: Contraction of an adapted functional calculus.J. Lie Theory 7 (1997), 147–164. Zbl 0882.22015, MR 1473162 |
Reference:
|
[14] Dooley A.H., Rice J.W.: On contractions of semisimple Lie groups.Trans. Amer. Math. Soc. 289 (1985), 185–202. Zbl 0546.22017, MR 0779059, 10.1090/S0002-9947-1985-0779059-4 |
Reference:
|
[15] Folland B.: Harmonic Analysis in Phase Space.Princeton Univ. Press, Princeton, 1989. Zbl 0682.43001, MR 0983366 |
Reference:
|
[16] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl 0993.53002, MR 1834454 |
Reference:
|
[17] Hörmander L.: The Analysis of Linear Partial Differential Operators.Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985. |
Reference:
|
[18] Kirillov A.A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175 |
Reference:
|
[19] Knapp A.W.: Representation Theory of Semisimple Groups. An Overview Based on Examples.Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. Zbl 0993.22001, MR 0855239 |
Reference:
|
[20] B. Kostant: Quantization and unitary representations.in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207. Zbl 0249.53016, MR 0294568, 10.1007/BFb0079068 |
Reference:
|
[21] Mackey G.: On the analogy between semisimple Lie groups and certain related semi-direct product groups.in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975. Zbl 0324.22006, MR 0409726 |
Reference:
|
[22] Rawnsley J.H.: Representations of a semi direct product by quantization.Math. Proc. Camb. Phil. Soc. 78 (1975), 345–350. Zbl 0313.22014, MR 0387499, 10.1017/S0305004100051793 |
Reference:
|
[23] Simms D.J.: Lie Groups and Quantum Mechanics.Lecture Notes in Mathematics, 52, Springer, Berlin, Heidelberg, New-York, 1968. Zbl 0161.24002, MR 0232579, 10.1007/BFb0069914 |
Reference:
|
[24] Taylor M.E.: Noncommutative Harmonis Analysis.Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986. MR 0852988 |
Reference:
|
[25] Voros A.: An algebra of pseudo differential operators and the asymptotics of quantum mechanics.J. Funct. Anal. 29 (1978), 104–132. MR 0496088, 10.1016/0022-1236(78)90049-6 |
Reference:
|
[26] Wallach N.R.: Harmonic Analysis on Homogeneous Spaces.Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973. Zbl 0265.22022, MR 0498996 |
Reference:
|
[27] Wildberger N.J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741 |
. |