Previous |  Up |  Next

Article

Title: Berezin-Weyl quantization for Cartan motion groups (English)
Author: Cahen, Benjamin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 1
Year: 2011
Pages: 127-137
Summary lang: English
.
Category: math
.
Summary: We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190]. (English)
Keyword: semidirect product
Keyword: Cartan motion group
Keyword: unitary representation
Keyword: semisimple Lie group
Keyword: symplectomorphism
Keyword: coadjoint orbit
Keyword: Weyl quantization
Keyword: Berezin quantization
MSC: 22E15
MSC: 22E45
MSC: 22E46
MSC: 22E70
MSC: 81R05
MSC: 81S10
idZBL: Zbl 1240.22010
idMR: MR2828363
.
Date available: 2011-03-08T17:43:11Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141432
.
Reference: [1] Ali S.T., Engliš M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, 10.1142/S0129055X05002376
Reference: [2] Berezin F.A.: Quantization.Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175. Zbl 0976.83531, MR 0395610
Reference: [3] Cahen B.: Deformation program for principal series representations.Lett. Math. Phys. 36 (1996), 65–75. Zbl 0843.22020, MR 1371298, 10.1007/BF00403252
Reference: [4] Cahen B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé.C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806. Zbl 0883.22016, MR 1483721, 10.1016/S0764-4442(97)80063-8
Reference: [5] Cahen B.: Contractions of $SU(1,n)$ and $SU(n+1)$ via Berezin quantization.J. Anal. Math. 97 (2005), 83–102. MR 2274974, 10.1007/BF02807403
Reference: [6] Cahen B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005
Reference: [7] Cahen B.: Weyl quantization for principal series.Beiträge Algebra Geom. 48 (2007), no. 1, 175–190. Zbl 1134.22010, MR 2326408
Reference: [8] Cahen B.: Contraction of compact semisimple Lie groups via Berezin quantization.Illinois J. Math. 53 (2009), no. 1, 265–288. Zbl 1185.22008, MR 2584946
Reference: [9] Cahen B.: Contraction of discrete series via Berezin quantization.J. Lie Theory 19 (2009), 291–310. Zbl 1185.22007, MR 2572131
Reference: [10] Cahen B.: Weyl quantization for the semi-direct product of a compact Lie group and a vector space.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347. MR 2573408
Reference: [11] B. Cahen: A contraction of the principal series by Berezin-Weyl quantization.Univ. Metz, preprint, 2010. MR 2682458
Reference: [12] Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds I. Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y
Reference: [13] Cotton P., Dooley A.H.: Contraction of an adapted functional calculus.J. Lie Theory 7 (1997), 147–164. Zbl 0882.22015, MR 1473162
Reference: [14] Dooley A.H., Rice J.W.: On contractions of semisimple Lie groups.Trans. Amer. Math. Soc. 289 (1985), 185–202. Zbl 0546.22017, MR 0779059, 10.1090/S0002-9947-1985-0779059-4
Reference: [15] Folland B.: Harmonic Analysis in Phase Space.Princeton Univ. Press, Princeton, 1989. Zbl 0682.43001, MR 0983366
Reference: [16] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl 0993.53002, MR 1834454
Reference: [17] Hörmander L.: The Analysis of Linear Partial Differential Operators.Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985.
Reference: [18] Kirillov A.A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175
Reference: [19] Knapp A.W.: Representation Theory of Semisimple Groups. An Overview Based on Examples.Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. Zbl 0993.22001, MR 0855239
Reference: [20] B. Kostant: Quantization and unitary representations.in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207. Zbl 0249.53016, MR 0294568, 10.1007/BFb0079068
Reference: [21] Mackey G.: On the analogy between semisimple Lie groups and certain related semi-direct product groups.in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975. Zbl 0324.22006, MR 0409726
Reference: [22] Rawnsley J.H.: Representations of a semi direct product by quantization.Math. Proc. Camb. Phil. Soc. 78 (1975), 345–350. Zbl 0313.22014, MR 0387499, 10.1017/S0305004100051793
Reference: [23] Simms D.J.: Lie Groups and Quantum Mechanics.Lecture Notes in Mathematics, 52, Springer, Berlin, Heidelberg, New-York, 1968. Zbl 0161.24002, MR 0232579, 10.1007/BFb0069914
Reference: [24] Taylor M.E.: Noncommutative Harmonis Analysis.Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986. MR 0852988
Reference: [25] Voros A.: An algebra of pseudo differential operators and the asymptotics of quantum mechanics.J. Funct. Anal. 29 (1978), 104–132. MR 0496088, 10.1016/0022-1236(78)90049-6
Reference: [26] Wallach N.R.: Harmonic Analysis on Homogeneous Spaces.Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973. Zbl 0265.22022, MR 0498996
Reference: [27] Wildberger N.J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-1_9.pdf 253.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo