Previous |  Up |  Next

Article

Title: $L^2$-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes (English)
Author: Apel, Thomas
Author: Sirch, Dieter
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 2
Year: 2011
Pages: 177-206
Summary lang: English
.
Category: math
.
Summary: An $L^2$-estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space. (English)
Keyword: elliptic boundary value problem
Keyword: a priori error estimates
Keyword: interpolation of non-smooth functions
Keyword: finite element error
Keyword: non-convex domains
Keyword: edge singularities
Keyword: anisotropic mesh grading
Keyword: Dirichlet and a Neumann boundary value problem
MSC: 35J25
MSC: 65D05
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1224.65252
idMR: MR2810243
DOI: 10.1007/s10492-011-0002-7
.
Date available: 2011-03-26T21:00:46Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141438
.
Reference: [1] Apel, Th.: Interpolation of non-smooth functions on anisotropic finite element meshes.M2AN, Math. Model. Numer. Anal. (1999), 33 1149-1185. Zbl 0984.65113, MR 1736894, 10.1051/m2an:1999139
Reference: [2] Apel, Th., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277-293. Zbl 0746.65077, MR 1155498, 10.1007/BF02320197
Reference: [3] Apel, Th., Heinrich, B.: Mesh refinement and windowing near edges for some elliptic problem.SIAM J. Numer. Anal. 31 (1994), 695-708. Zbl 0807.65122, MR 1275108, 10.1137/0731037
Reference: [4] Apel, Th., Nicaise, S.: Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes.Preprint TU Chemnitz-Zwickau SPC94\_16 (1994). MR 1399121
Reference: [5] Apel, Th., Nicaise, S.: Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes.Partial Differential Equations and Functional Analysis. In Memory of Pierre Grisvard J. Cea, D. Chenais, G. Geymonat, J.-L. Lions Birkhäuser Boston (1996), 18-34 shortened version of Preprint SPC94\_16, TU Chemnitz-Zwickau, 1994. Zbl 0854.35005, MR 1399121
Reference: [6] Apel, Th., Sändig, A.-M., Whiteman, J. R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains.Math. Methods Appl. Sci. 19 (1996), 63-85. MR 1365264, 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-S
Reference: [7] Apel, Th., Sirch, D., Winkler, G.: Error estimates for control contstrained optimal control problems: Discretization with anisotropic finite element meshes.Preprint SPP1253-02-06 publ DFG Priority Program 1253 Erlangen (2008).
Reference: [8] Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem.Comput. Optim. Appl. (2002), 23 201-229. Zbl 1033.65044, MR 1937089, 10.1023/A:1020576801966
Reference: [9] Beagles, A. E., Whiteman, J. R.: Finite element treatment of boundary singularities by augmentation with non-exact singular functions.Numer. Methods Partial Differ. Equations 2 (1986), 113-121. Zbl 0626.65112, MR 0867853, 10.1002/num.1690020203
Reference: [10] Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems.Comput. Optim. Appl. 31 (2005), 193-219. Zbl 1081.49023, MR 2150243, 10.1007/s10589-005-2180-2
Reference: [11] Clément, P.: Approximation by finite element functions using local regularization.Rev. Franc. Automat. Inform. Rech. Operat. 2 (1975), 77-84. MR 0400739
Reference: [12] Dauge, M.: Neumann and mixed problems on curvilinear polyhedra.Integral Equations Oper. Theory 15 (1992), 227-261. Zbl 0767.46026, MR 1147281, 10.1007/BF01204238
Reference: [13] Falk, R. S.: Approximation of a class of optimal control problems with order of convergence estimates.J. Math. Anal. Appl. 44 (1973), 28-47. Zbl 0268.49036, MR 0686788, 10.1016/0022-247X(73)90022-X
Reference: [14] Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation.RAIRO, Anal. Numér. 13 (1979), 313-328. Zbl 0426.65067, MR 0555382, 10.1051/m2an/1979130403131
Reference: [15] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, Vol. 24.Pitman Boston (1985). MR 0775683
Reference: [16] Grisvard, P.: Singularities in boundary value problems. Research Notes in Applied Mathematics, Vol. 22.Masson/Springer Paris/Berlin (1992). MR 1173209
Reference: [17] Grisvard, P.: Singular behavior of elliptic problems in non Hilbertian Sobolev spaces.J. Math. Pures Appl., IX. Sér. 74 (1995), 3-33. Zbl 0854.35018, MR 1313613
Reference: [18] Hinze, M.: A variational discretization concept in control constrained optimization: The linear-quadratic case.Comput. Optim. Appl. 30 (2005), 45-61. Zbl 1074.65069, MR 2122182, 10.1007/s10589-005-4559-5
Reference: [19] Kondrat'ev, V. A.: Singularities of the solution of Dirichlet problem for a second-order elliptic equation in the neighborhood of an edge.Differ. Uravn. 13 (1977), 2026-2032 Russian. MR 0486987
Reference: [20] Kufner, A., Sändig, A.-M.: Some Applications of Weighted Sobolev Spaces.Teubner Leipzig (1987). MR 0926688
Reference: [21] Lubuma, J. M.-S., Nicaise, S.: Finite element method for elliptic problems with edge singularities.J. Comput. Appl. Math. 106 (1999), 145-168. Zbl 0936.65130, MR 1696808, 10.1016/S0377-0427(99)00062-X
Reference: [22] Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems.Appl. Math. Optimization 8 (1982), 69-95. Zbl 0479.49017, MR 0646505, 10.1007/BF01447752
Reference: [23] Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems.SIAM J. Control Optim. 43 (2004), 970-985. Zbl 1071.49023, MR 2114385, 10.1137/S0363012903431608
Reference: [24] Michlin, S. G.: Partielle Differentialgleichungen in der mathematischen Physik.Akademie-Verlag Berlin (1978), German. Zbl 0397.35001, MR 0513026
Reference: [25] Nazarov, S. A., Plamenevsky, B. A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries.Walther de Gruyter &amp; Co. Berlin (1994). Zbl 0806.35001, MR 1283387
Reference: [26] mann, J. Roß: Gewichtete Sobolev-Slobodetskiĭ-Räume und Anwendungen auf elliptische Randwertaufgaben in Gebieten mit Kanten.Habilitationsschrift Universität Rostock Rostock (1988), German.
Reference: [27] mann, J. Roß: The asymptotics of the solutions of linear elliptic variational problems in domains with edges.Z. Anal. Anwend. 9 (1990), 565-578. MR 1119299, 10.4171/ZAA/424
Reference: [28] Sändig, A.-M.: Error estimates for finite-element solutions of elliptic boundary value problems in non-smooth domains.Z. Anal. Anwend. 9 (1990), 133-153. MR 1063250, 10.4171/ZAA/388
Reference: [29] Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions.Math. Comput. 54 (1990), 483-493. Zbl 0696.65007, MR 1011446, 10.1090/S0025-5718-1990-1011446-7
Reference: [30] Zaionchkovskii, V., Solonnikov, V. A.: Neumann problem for second-order elliptic equations in domains with edges on the boundary.J. Sov. Math. 27 (1984), 2561-2586. 10.1007/BF01103718
.

Files

Files Size Format View
AplMat_56-2011-2_2.pdf 380.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo