Previous |  Up |  Next

Article

Title: Almost sufficient and necessary conditions for permanence and extinction of nonautonomous discrete logistic systems with time-varying delays and feedback control (English)
Author: Xu, Jiabo
Author: Teng, Zhidong
Author: Gao, Shujing
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 2
Year: 2011
Pages: 207-225
Summary lang: English
.
Category: math
.
Summary: A class of nonautonomous discrete logistic single-species systems with time-varying pure-delays and feedback control is studied. By introducing a new research method, almost sufficient and necessary conditions for the permanence and extinction of species are obtained. Particularly, when the system degenerates into a periodic system, sufficient and necessary conditions on the permanence and extinction of species are obtained. Moreover, a very important fact is found in our results, that is, the feedback control and delays are harmless for the permanence and extinction of species for discrete single-species systems. This shows that in a discrete single-species system introducing the feedback control to factitiously control the permanence and extinction of species is useless. (English)
Keyword: discrete system
Keyword: permanence
Keyword: extinction
Keyword: feedback control
Keyword: time-varying delay
MSC: 39A22
MSC: 39A30
MSC: 92D25
MSC: 93B52
idZBL: Zbl 1223.92051
idMR: MR2810244
DOI: 10.1007/s10492-011-0003-6
.
Date available: 2011-03-26T21:03:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141439
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications.Marcel Dekker New York (1992). Zbl 0925.39001, MR 1155840
Reference: [2] Agarwal, R. P., Li, W.-T., Pang, P. Y. H.: Asymptotic behavior of a class of nonlinear delay difference equations.J. Difference Equ. Appl. 8 (2002), 719-728. Zbl 1010.39003, MR 1914599, 10.1080/1023619021000000735
Reference: [3] Bohner, M., Fan, M., Zhang, J.: Existence of periodic solutions in predator-prey and competition dynamic systems.Nonlinear Anal., Real World Appl. 7 (2006), 1193-1204. Zbl 1104.92057, MR 2260908, 10.1016/j.nonrwa.2005.11.002
Reference: [4] Braverman, E.: On a discrete model of population dynamics with impulsive harvesting or recruitment.Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 751-759 (Electronic only). Zbl 1222.92060, 10.1016/j.na.2004.12.015
Reference: [5] Braverman, E., Saker, S. H.: Permanence, oscillation and attractivity of the discrete hematopoiesis model with variable coefficients.Nonlinear Anal., Theory Methods Appl. 67 (2007), 2955-2965. Zbl 1125.39002, MR 2348007, 10.1016/j.na.2006.09.056
Reference: [6] Chen, F.: Permanence in a discrete Lotka-Volterra competition model with deviating arguments.Nonlinear Anal., Real World Appl. 9 (2008), 2150-2155. Zbl 1156.39300, MR 2441771
Reference: [7] Chen, F.: Permanence of a single species discrete model with feedback control and delay.Appl. Math. Lett. 20 (2007), 729-733. Zbl 1128.92029, MR 2314699, 10.1016/j.aml.2006.08.023
Reference: [8] Chen, F., Wu, L., Li, Z.: Permanence and global attractivity of the discrete Gilpin-Ayala type population model.Comput. Math. Appl. 53 (2007), 1214-1227. Zbl 1127.92038, MR 2327675, 10.1016/j.camwa.2006.12.015
Reference: [9] Chen, X., Chen, F.: Stable periodic solution of a discrete periodic Lotka-Volterra competition system with a feedback control.Appl. Math. Comput. 181 (2006), 1446-1454. Zbl 1106.39003, MR 2270776, 10.1016/j.amc.2006.02.039
Reference: [10] Chen, Y., Zhou, Z.: Stable periodic solution of a discrete periodic Lotka-Volterra competition system.J. Math. Anal. Appl. 277 (2003), 358-366. Zbl 1019.39004, MR 1954481, 10.1016/S0022-247X(02)00611-X
Reference: [11] Douraki, M. J., Mashreghi, J.: On the population model of the non-autonomous logistic equation of second order with period-two parameters.J. Difference Equ. Appl. 14 (2008), 231-257. Zbl 1135.92026, MR 2397323, 10.1080/10236190701466504
Reference: [12] Emmert, K. E., Allen, L. J. S.: Population persistence and extinction in a discrete-time, stage-structured epidemic model.J. Difference Equ. Appl. 10 (2004), 1177-1199. Zbl 1067.92052, MR 2100721, 10.1080/10236190410001654151
Reference: [13] Fan, M., Wang, Q.: Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems.Disc. Cont. Dyn. Syst., Ser. B 4 (2004), 563-574. Zbl 1100.92064, MR 2073960, 10.3934/dcdsb.2004.4.563
Reference: [14] Fan, Y.-H., Li, W.-T.: Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response.J. Math. Anal. Appl. 299 (2004), 357-374. Zbl 1063.39013, MR 2098248, 10.1016/j.jmaa.2004.02.061
Reference: [15] Giang, D. V., Huong, D. C.: Nontrivial periodicity in discrete delay models of population growth.J. Math. Anal. Appl. 305 (2005), 291-295. Zbl 1096.92034, MR 2128128, 10.1016/j.jmaa.2004.11.035
Reference: [16] Győri, I., Trofimchuk, S. I.: Global attractivity and persistence in a discrete population model.J. Difference Equ. Appl. 6 (2000), 647-665. MR 1813210, 10.1080/10236190008808250
Reference: [17] Huo, H.-F., Li, W.-T.: Permanence and global stability for nonautonomous discrete model of plankton allelopathy.Appl. Math. Letters 17 (2004), 1007-1013. Zbl 1067.39009, MR 2087748, 10.1016/j.aml.2004.07.002
Reference: [18] Kocic, V. L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Application.Kluwer Academic Publishers Dordrecht (1993). MR 1247956
Reference: [19] Kon, R.: Permanence of discrete-time Kolmogorov systems for two species and saturated fixed points.J. Math. Biol. 48 (2004), 57-81. Zbl 1050.92045, MR 2035520, 10.1007/s00285-003-0224-8
Reference: [20] Li, Y. K., Zhu, L. F.: Existence of positive periodic solutions for difference equations with feedback control.Appl. Math. Lett. 18 (2005), 61-67. Zbl 1085.39009, MR 2121555, 10.1016/j.aml.2004.09.002
Reference: [21] Liao, X., Ouyang, Z., Zhou, S.: Permanence of species in nonautonomous discrete Lotka-Volterra competitive system with delays and feedback controls.J. Comput. Appl. Math. 211 (2008), 1-10. Zbl 1143.39005, MR 2386823, 10.1016/j.cam.2006.10.084
Reference: [22] Liao, X., Zhou, S., Chen, Y.: Permanence and global stability in a discrete $n$-species competition system with feedback controls.Nonlinear Anal., Real World Appl. 9 (2008), 1661-1671. Zbl 1154.34352, MR 2422571
Reference: [23] Liao, L., Yu, J., Wang, L.: Global attractivity in a logistic difference model with a feedback control.Comput. Math. Appl. 44 (2002), 1403-1411. Zbl 1043.93053, MR 1938776, 10.1016/S0898-1221(02)00265-1
Reference: [24] Liu, Z., Chen, L.: Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays.J. Comput. Appl. Math. 197 (2006), 446-456. Zbl 1098.92066, MR 2260418, 10.1016/j.cam.2005.09.023
Reference: [25] Liz, E.: A sharp global stability result for a discrete population model.J. Math. Anal. Appl. 330 (2007), 740-743. Zbl 1108.92033, MR 2302956, 10.1016/j.jmaa.2006.06.030
Reference: [26] Liz, E., Tkachenko, V., Trofimchuk, S.: Global stability in discrete population models with delayed-density dependence.Math. Biosci. 199 (2006), 26-37. Zbl 1086.92045, MR 2205557, 10.1016/j.mbs.2005.03.016
Reference: [27] Lu, Z., Wang, W.: Permanence and global attractivity for Lotka-Volterra difference systems.J. Math. Biol. 39 (1999), 269-282. Zbl 0945.92022, MR 1716315, 10.1007/s002850050171
Reference: [28] Merdan, H., Duman, O.: On the stability analysis of a general discrete-time population model involving predation and Allee effects.Chaos Solitons Fractals 40 (2009), 1169-1175. Zbl 1197.39009, MR 2526104, 10.1016/j.chaos.2007.08.081
Reference: [29] Muroya, Y.: Persistence and global stability in discrete models of Lotka-Volterra type.J. Math. Anal. Appl. 330 (2007), 24-33. Zbl 1124.39011, MR 2298155, 10.1016/j.jmaa.2006.07.070
Reference: [30] Muroya, Y.: Persistence and global stability in discrete models of pure-delay nonautonomous Lotka-Volterra type.J. Math. Anal. Appl. 293 (2004), 446-461. Zbl 1059.39007, MR 2053890, 10.1016/j.jmaa.2003.12.033
Reference: [31] Papaschinopoulos, G., Schinas, C. J.: Persistence, oscillatory behavior, and periodicity of the solutions of a system of two nonlinear difference equations.J. Difference Equ. Appl. 4 (1998), 315-323. Zbl 0913.39009, MR 1657224, 10.1080/10236199808808146
Reference: [32] Sadhukhan, D., Mondal, B., Maiti, M.: Discrete age-structured population model with age dependent harvesting and its stability analysis.Appl. Math. Comput. 201 (2008), 631-639. Zbl 1143.92041, MR 2431960, 10.1016/j.amc.2007.12.063
Reference: [33] Saito, Y., Ma, W., Hara, T.: A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays.J. Math. Anal. Appl. 256 (2001), 162-174. Zbl 0976.92031, MR 1820074, 10.1006/jmaa.2000.7303
Reference: [34] Saker, S. H.: Periodic solutions, oscillation and attractivity of discrete nonlinear delay population model.Math. Comput. Modelling 47 (2008), 278-297. Zbl 1130.92044, MR 2378835, 10.1016/j.mcm.2007.04.007
Reference: [35] Teng, Z.: Permanence and stability in non-autonomous logistic systems with infinite delay.Dyn. Syst. 17 (2002), 187-202. Zbl 1035.34086, MR 1927807, 10.1080/14689360110102312
Reference: [36] Wang, W., Mulone, G., Salemi, F., Salone, V.: Global stability of discrete population models with time delays and fluctuating environment.J. Math. Anal. Appl. 264 (2001), 147-167. Zbl 1006.92025, MR 1868334, 10.1006/jmaa.2001.7666
Reference: [37] Xia, Y., Cao, J., Lin, M.: Discrete-time analogues of predator-prey models with monotonic or nonmonotonic functional responses.Nonlinear Anal., Real World Appl. 8 (2007), 1079-1095. Zbl 1127.39038, MR 2331428
Reference: [38] Xiong, X., Zhang, Z.: Periodic solutions of a discrete two-species competitive model with stage structure.Math. Comput. Modelling 48 (2008), 333-343. Zbl 1145.34334, MR 2431471, 10.1016/j.mcm.2007.10.004
Reference: [39] Yang, X.: Uniform persistence and periodic solutions for a discrete predator-prey system with delays.J. Math. Anal. Appl. 316 (2006), 161-177. Zbl 1107.39017, MR 2201755, 10.1016/j.jmaa.2005.04.036
.

Files

Files Size Format View
AplMat_56-2011-2_3.pdf 281.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo