Previous |  Up |  Next

Article

Title: Impulsive semilinear neutral functional differential inclusions with multivalued jumps (English)
Author: Abada, Nadjet
Author: Agarwal, Ravi P.
Author: Benchohra, Mouffak
Author: Hammouche, Hadda
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 2
Year: 2011
Pages: 227-250
Summary lang: English
.
Category: math
.
Summary: In this paper we establish sufficient conditions for the existence of mild solutions and extremal mild solutions for some densely defined impulsive semilinear neutral functional differential inclusions in separable Banach spaces. We rely on a fixed point theorem for the sum of completely continuous and contraction operators. (English)
Keyword: impulsive semilinear neutral functional differential equation
Keyword: densely defined operator
Keyword: infinite delay
Keyword: phase space
Keyword: fixed point
Keyword: mild solutions
Keyword: extremal mild solution
MSC: 34A37
MSC: 34G25
MSC: 34K09
MSC: 34K30
MSC: 34K35
MSC: 34K45
MSC: 47N20
idZBL: Zbl 1224.34207
idMR: MR2810245
DOI: 10.1007/s10492-011-0004-5
.
Date available: 2011-03-26T21:05:20Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141440
.
Reference: [1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for impulsive partial functional differential inclusions.Nonlinear Anal., Theory Methods Appl. 69 (2008), 2892-2909. Zbl 1160.34068, MR 2452100, 10.1016/j.na.2007.08.060
Reference: [2] Abada, N., Benchohra, M., Hammouche, H., Ouahab, A.: Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces.Discuss. Math., Differ. Incl. Control Optim. 27 (2007), 329-347. Zbl 1145.34047, MR 2413817, 10.7151/dmdico.1088
Reference: [3] Ahmed, N. U.: Semigroup Theory with Applications to Systems and Control. Pitman Research Notes in Mathematics Series, 246.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1991). MR 1100706
Reference: [4] Ahmed, N. U.: Dynamic Systems and Control with Applications.World Scientific Publishing Hackensack (2006). Zbl 1127.93001, MR 2257896
Reference: [5] Ahmed, N. U.: Systems governed by impulsive differential inclusions on Hilbert spaces.Nonlinear Anal., Theory Methods Appl. 45 (2001), 693-706. Zbl 0995.34053, MR 1841203, 10.1016/S0362-546X(99)00417-4
Reference: [6] Ahmed, N. U.: Optimal impulse control for impulsive systems in Banach spaces.Int. J. Differ. Equ. Appl. 1 (2000), 37-52. Zbl 0959.49023, MR 1734517
Reference: [7] Bajnov, D. D., Simeonov, P. S.: Systems with Impulse Effect. Stability, Theory and Applications.Ellis Horwood Chichester (1989). Zbl 0683.34032, MR 1010418
Reference: [8] Belmekki, M., Benchohra, M., Ezzinbi, K., Ntouyas, S. K.: Existence results for some partial functional differential equations with infinite delay.Nonlinear Stud. 15 (2008), 373-385. Zbl 1182.34102, MR 2483148
Reference: [9] Benchohra, M., Górniewicz, L., Ntouyas, S. K.: Controllability of Some Nonlinear Systems in Banach Spaces (The Fixed Point Theory Approach).Pawel Wlodkowic University College, Wydawnictwo Naukowe NOVUM Plock (2003). Zbl 1059.49001
Reference: [10] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions, Vol. 2.Hindawi Publishing Corporation New York (2006). MR 2322133
Reference: [11] Benedetti, I.: An existence result for impulsive functional differential inclusions in Banach spaces.Discuss. Math., Differ. Incl. Control Optim. 24 (2004), 13-30. Zbl 1071.34087, MR 2118212, 10.7151/dmdico.1049
Reference: [12] Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay. A survey.Nonlinear Anal., Theory Methods Appl. 4 (1980), 831-877. Zbl 0449.34048, MR 0586852, 10.1016/0362-546X(80)90001-2
Reference: [13] Prato, G. Da, Grisvard, E.: On extrapolation spaces.Atti. Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 72 (1982), 330-332. Zbl 0527.46055, MR 0726298
Reference: [14] Dhage, B. C.: Multivalued maping and fixed point.Nonlinear Funct. Anal. Appl. 10 (2005), 359-378. MR 2194603
Reference: [15] Dhage, B. C.: A fixed point theorem for multi-valued mappings on ordered Banach spaces with applications II.Panam. Math. J. 15 (2005), 15-34. MR 2144192
Reference: [16] Dhage, B. C., Gatsori, E., Ntouyas, S. K.: Existence theory for perturbed functional differential inclusions.Commun. Appl. Nonlinear Anal. 13 (2006), 15-26. Zbl 1210.34084, MR 2226948
Reference: [17] Deimling, K.: Multivalued Differential Equations.Walter De Gruyter Berlin (1992). Zbl 0820.34009, MR 1189795
Reference: [18] Engel, K. J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.Springer Berlin (2000). Zbl 0952.47036, MR 1721989
Reference: [19] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Academic Press Boston (1988). Zbl 0661.47045, MR 0959889
Reference: [20] Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications, 495.Kluwer Academic Publishers Dordrecht (1999). MR 1748378
Reference: [21] Hale, J. K.: Theory of Functional Differential Equations.Springer New York (1977). Zbl 0352.34001, MR 0508721
Reference: [22] Hale, J. K., Kato, J.: Phase space for retarded equations with infinite delay.Funkc. Ekvacioj, Ser. Int. 21 (1978), 11-41. Zbl 0383.34055, MR 0492721
Reference: [23] Hale, J. K., Lunel, S. H. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99.Springer New York (1993). MR 1243878
Reference: [24] Heikkila, S., Lakshmikantham, V.: Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations.Marcel Dekker Inc. New York (1994). MR 1280028
Reference: [25] Hernández, E., Henríquez, H. R.: Existence results for partial neutral functional differential equations with unbounded delay.J. Math. Anal. Appl. 221 (1998), 452-475. MR 1621730, 10.1006/jmaa.1997.5875
Reference: [26] Henríquez, H. R.: Existence of periodic solutions of partial neutral functional differential equations with unbounded delay.J. Math. Anal. Appl. 221 (1998), 499-522. MR 1621738, 10.1006/jmaa.1997.5899
Reference: [27] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes Math. Vol. 1473.Springer Berlin (1991). MR 1122588, 10.1007/BFb0084439
Reference: [28] Hu, Sh., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer Academic Publishers Dordrecht (1997). Zbl 0887.47001, MR 1485775
Reference: [29] Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications.De Gruyter Berlin (2001). MR 1831201
Reference: [30] Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations.J. Differ. Equations 37 (1980), 141-183. Zbl 0466.34036, MR 0587220, 10.1016/0022-0396(80)90093-5
Reference: [31] Kisielewicz, M.: Differential Inclusions and Optimal Control.Kluwer Academic Publishers Dordrecht (1990). Zbl 0731.49001, MR 1135796
Reference: [32] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications, 463.Kluwer Academic Publishers Dordrecht (1999). MR 1680144
Reference: [33] Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics.Academic Press Boston (1993). Zbl 0777.34002, MR 1218880
Reference: [34] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.World Scientific Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [35] Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay. Mathematics and Its Applications.Kluwer Academic Publishers Dordrecht (1994). MR 1319339
Reference: [36] Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl 0151.10703, MR 0196178
Reference: [37] Liu, J. H.: Nonlinear impulsive evolution equations.Dyn. Contin. Discrete Impulsive Syst. 6 (1999), 77-85. Zbl 0932.34067, MR 1679758
Reference: [38] Migorski, S., Ochal, A.: Nonlinear impulsive evolution inclusions of second order.Dyn. Syst. Appl. 16 (2007), 155-173. Zbl 1128.34038, MR 2305434
Reference: [39] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer New York (1983). Zbl 0516.47023, MR 0710486
Reference: [40] Rogovchenko, Y. V.: Impulsive evolution systems: Main results and new trends.Dyn. Contin. Discrete Impulsive Syst. 3 (1997), 57-88. Zbl 0879.34014, MR 1435816
Reference: [41] Rogovchenko, Y. V.: Nonlinear impulsive evolution systems and applications to population models.J. Math. Anal. Appl. 207 (1997), 300-315. MR 1438916, 10.1006/jmaa.1997.5245
Reference: [42] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Singapore (1995). Zbl 0837.34003, MR 1355787
Reference: [43] Schumacher, K.: Existence and continuous dependence for functional-differential equations with unbounded delay.Arch. Ration. Mech. Anal. 67 (1978), 315-335. Zbl 0383.34052, MR 0477379, 10.1007/BF00247662
Reference: [44] Shin, J. S.: An existence of functional differential equations.Arch. Ration. Mech. Anal. 30 (1987), 19-29. MR 0915258
Reference: [45] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences 119.Springer New York (1996). MR 1415838, 10.1007/978-1-4612-4050-1
Reference: [46] Yosida, K.: Functional Analysis, 6th ed.Springer Berlin (1980). Zbl 0435.46002, MR 0617913
.

Files

Files Size Format View
AplMat_56-2011-2_4.pdf 334.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo