Previous |  Up |  Next

Article

Title: Set colorings in perfect graphs (English)
Author: Gera, Ralucca
Author: Okamoto, Futaba
Author: Rasmussen, Craig
Author: Zhang, Ping
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 1
Year: 2011
Pages: 61-68
Summary lang: English
.
Category: math
.
Summary: For a nontrivial connected graph $G$, let $c\colon V(G)\rightarrow \mathbb {N}$ be a vertex coloring of $G$ where adjacent vertices may be colored the same. For a vertex $v \in V(G)$, the neighborhood color set $\mathop {\rm NC}(v)$ is the set of colors of the neighbors of $v$. The coloring $c$ is called a set coloring if $\mathop {\rm NC}(u)\neq \mathop {\rm NC}(v)$ for every pair $u, v$ of adjacent vertices of $G$. The minimum number of colors required of such a coloring is called the set chromatic number $\chi _{\rm s}(G)$. We show that the decision variant of determining $\chi _{\rm s}(G)$ is NP-complete in the general case, and show that $\chi _{\rm s}(G)$ can be efficiently calculated when $G$ is a threshold graph. We study the difference $\chi (G)-\chi _{\rm s}(G)$, presenting new bounds that are sharp for all graphs $G$ satisfying $\chi (G)=\omega (G)$. We finally present results of the Nordhaus-Gaddum type, giving sharp bounds on the sum and product of $\chi _{\rm s}(G)$ and $\chi _{\rm s}({\overline G})$. (English)
Keyword: set coloring
Keyword: perfect graph
Keyword: NP-completeness
MSC: 05C15
MSC: 05C17
MSC: 05C35
MSC: 05C70
idZBL: Zbl 1224.05171
idMR: MR2807709
DOI: 10.21136/MB.2011.141450
.
Date available: 2011-03-31T11:26:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141450
.
Reference: [1] Chartrand, G., Mitchem, J.: Graphical theorems of the Nordhaus-Gaddum class.Recent Trends in Graph Theory. Proc. 1st New York City Graph Theory Conf. 1970, Lect. Notes Math 186 55-61 (1971), Springer Berlin. Zbl 0211.56702, MR 0289354, 10.1007/BFb0059422
Reference: [2] Chartrand, G., Okamoto, F., Rasmussen, C., Zhang, P.: The set chromatic number of a graph.Discuss. Math., Graph Theory (to appear). MR 2642800
Reference: [3] Chartrand, G., Polimeni, A. D.: Ramsey theory and chromatic numbers.Pac. J. Math. 55 (1974), 39-43. Zbl 0284.05107, MR 0371707, 10.2140/pjm.1974.55.39
Reference: [4] Chvátal, V., Hammer, P.: Set-packing problems and threshold graphs.CORR 73-21 University of Waterloo (1973).
Reference: [5] Finck, H. J.: On the chromatic numbers of a graph and its complement.Theory of Graphs. Proc. Colloq., Tihany, 1966 Academic Press New York (1968), 99-113. Zbl 0157.55201, MR 0232704
Reference: [6] Golumbic, M. C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edition.Elsevier Amsterdam (2004). MR 2063679
Reference: [7] Hammer, P., Simeone, B.: The splittance of a graph.Combinatorica 1 (1981), 275-284. Zbl 0492.05043, MR 0637832, 10.1007/BF02579333
Reference: [8] Nordhaus, E. A., Gaddum, J. W.: On complementary graphs.Am. Math. Mon. 63 (1956), 175-177. Zbl 0070.18503, MR 0078685, 10.2307/2306658
Reference: [9] Stewart, B. M.: On a theorem of Nordhaus and Gaddum.J. Comb. Theory 6 (1969), 217-218. MR 0274339, 10.1016/S0021-9800(69)80126-2
.

Files

Files Size Format View
MathBohem_136-2011-1_7.pdf 255.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo