Previous |  Up |  Next

Article

Title: Invariant approximation for fuzzy nonexpansive mappings (English)
Author: Beg, Ismat
Author: Abbas, Mujahid
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 1
Year: 2011
Pages: 51-59
Summary lang: English
.
Category: math
.
Summary: We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all {$t$-best} approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric space is proved. Our results extend, generalize and unify various known results in the existing literature. (English)
Keyword: fuzzy normed space
Keyword: strictly convex fuzzy normed space
Keyword: fixed point
Keyword: fuzzy nonexpansive mapping
Keyword: fuzzy best approximation
Keyword: fuzzy Banach mapping
MSC: 41A50
MSC: 41A65
MSC: 46S40
MSC: 47H09
MSC: 47H10
MSC: 54H25
idZBL: Zbl 1216.47083
idMR: MR2807708
DOI: 10.21136/MB.2011.141449
.
Date available: 2011-03-31T11:25:39Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141449
.
Reference: [1] Bag, T., Samanta, S. K.: Fixed point theorems on fuzzy normed spaces.Inf. Sci. 176 (2006), 2910-2931. MR 2249178, 10.1016/j.ins.2005.07.013
Reference: [2] Bag, T., Samanta, S. K.: Fixed point theorems in Felbin's type fuzzy normed spaces.J. Fuzzy Math. 16 (2008), 243-260. MR 2388141
Reference: [3] Beg, I., Abbas, M.: Common fixed points of Banach operator pair on fuzzy normed spaces.Fixed Point Theory (to appear). MR 2463941
Reference: [4] Beg, I., Sedghi, S., Shobe, N.: Common fixed point of uniformly $R$-subweakly commuting mappings in fuzzy Banach spaces.J. Fuzzy Math. 18 (2010), 75-84. Zbl 1204.47098, MR 2647702
Reference: [5] Deng, Z. K.: Fuzzy pseudo-metric spaces.J. Math. Anal. Appl. 86 (1982), 74-95. Zbl 0501.54003, 10.1016/0022-247X(82)90255-4
Reference: [6] W. G. Dotson, Jr.: On fixed points of nonexpansive mappings in nonconvex sets.Proc. Amer. Math. Soc. 38 (1973), 155-156. Zbl 0274.47029, MR 0313894, 10.1090/S0002-9939-1973-0313894-9
Reference: [7] Naschie, M. S. El: On a class of fuzzy Khaler-like manifolds.Chaos Solitons Fractals 26 (2005), 257-261. 10.1016/j.chaos.2004.12.024
Reference: [8] George, A., Veeramani, P.: On some results in fuzzy metric space.Fuzzy Sets Syst. 64 (1994), 395-399. MR 1289545
Reference: [9] George, A., Veeramani, P.: On some results of analysis for fuzzy metric space.Fuzzy Sets Syst. 90 (1997), 365-368. MR 1477836
Reference: [10] Kramosil, I., Michalek, J.: Fuzzy metrics and statistical metric spaces.Kybernetika, Praha 11 (1975), 336-344. Zbl 0319.54002, MR 0410633
Reference: [11] Kaleva, O., Seikkala, S.: On fuzzy metric spaces.Fuzzy Sets Syst. 12 (1984), 215-229. Zbl 0558.54003, MR 0740095
Reference: [12] Narang, T. D., Chandok, S.: Fixed points and best approximation in metric spaces.Indian J. Math., Pramila Srivastava memorial 51 (2009), 293-303. Zbl 1180.41024, MR 2537948
Reference: [13] Sharma, S.: Common fixed point theorems in fuzzy metric spaces.Fuzzy Sets Syst. 127 (2002), 345-352. Zbl 0990.54029, MR 1899067
Reference: [14] Vaezpour, S. M., Karimi, F.: $t$-best approximation in fuzzy normed spaces.Iran. J. Fuzzy Syst. 5 (2008), 93-99. Zbl 1171.46051, MR 2432015
Reference: [15] Veeramani, P.: On some fixed point theorems on uniformly convex Banach spaces.J. Math. Anal. Appl. 167 (1992), 160-166. Zbl 0780.47047, MR 1165265, 10.1016/0022-247X(92)90243-7
Reference: [16] Veeramani, P.: Best approximation in fuzzy metric spaces.J. Fuzzy Math. 9 (2001), 75-80. Zbl 0986.54006, MR 1822315
Reference: [17] Zadeh, L. A.: Fuzzy sets.Inform. Acad Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
.

Files

Files Size Format View
MathBohem_136-2011-1_6.pdf 240.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo