Title:
|
Invariant approximation for fuzzy nonexpansive mappings (English) |
Author:
|
Beg, Ismat |
Author:
|
Abbas, Mujahid |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
51-59 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all {$t$-best} approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric space is proved. Our results extend, generalize and unify various known results in the existing literature. (English) |
Keyword:
|
fuzzy normed space |
Keyword:
|
strictly convex fuzzy normed space |
Keyword:
|
fixed point |
Keyword:
|
fuzzy nonexpansive mapping |
Keyword:
|
fuzzy best approximation |
Keyword:
|
fuzzy Banach mapping |
MSC:
|
41A50 |
MSC:
|
41A65 |
MSC:
|
46S40 |
MSC:
|
47H09 |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 1216.47083 |
idMR:
|
MR2807708 |
DOI:
|
10.21136/MB.2011.141449 |
. |
Date available:
|
2011-03-31T11:25:39Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141449 |
. |
Reference:
|
[1] Bag, T., Samanta, S. K.: Fixed point theorems on fuzzy normed spaces.Inf. Sci. 176 (2006), 2910-2931. MR 2249178, 10.1016/j.ins.2005.07.013 |
Reference:
|
[2] Bag, T., Samanta, S. K.: Fixed point theorems in Felbin's type fuzzy normed spaces.J. Fuzzy Math. 16 (2008), 243-260. MR 2388141 |
Reference:
|
[3] Beg, I., Abbas, M.: Common fixed points of Banach operator pair on fuzzy normed spaces.Fixed Point Theory (to appear). MR 2463941 |
Reference:
|
[4] Beg, I., Sedghi, S., Shobe, N.: Common fixed point of uniformly $R$-subweakly commuting mappings in fuzzy Banach spaces.J. Fuzzy Math. 18 (2010), 75-84. Zbl 1204.47098, MR 2647702 |
Reference:
|
[5] Deng, Z. K.: Fuzzy pseudo-metric spaces.J. Math. Anal. Appl. 86 (1982), 74-95. Zbl 0501.54003, 10.1016/0022-247X(82)90255-4 |
Reference:
|
[6] W. G. Dotson, Jr.: On fixed points of nonexpansive mappings in nonconvex sets.Proc. Amer. Math. Soc. 38 (1973), 155-156. Zbl 0274.47029, MR 0313894, 10.1090/S0002-9939-1973-0313894-9 |
Reference:
|
[7] Naschie, M. S. El: On a class of fuzzy Khaler-like manifolds.Chaos Solitons Fractals 26 (2005), 257-261. 10.1016/j.chaos.2004.12.024 |
Reference:
|
[8] George, A., Veeramani, P.: On some results in fuzzy metric space.Fuzzy Sets Syst. 64 (1994), 395-399. MR 1289545 |
Reference:
|
[9] George, A., Veeramani, P.: On some results of analysis for fuzzy metric space.Fuzzy Sets Syst. 90 (1997), 365-368. MR 1477836 |
Reference:
|
[10] Kramosil, I., Michalek, J.: Fuzzy metrics and statistical metric spaces.Kybernetika, Praha 11 (1975), 336-344. Zbl 0319.54002, MR 0410633 |
Reference:
|
[11] Kaleva, O., Seikkala, S.: On fuzzy metric spaces.Fuzzy Sets Syst. 12 (1984), 215-229. Zbl 0558.54003, MR 0740095 |
Reference:
|
[12] Narang, T. D., Chandok, S.: Fixed points and best approximation in metric spaces.Indian J. Math., Pramila Srivastava memorial 51 (2009), 293-303. Zbl 1180.41024, MR 2537948 |
Reference:
|
[13] Sharma, S.: Common fixed point theorems in fuzzy metric spaces.Fuzzy Sets Syst. 127 (2002), 345-352. Zbl 0990.54029, MR 1899067 |
Reference:
|
[14] Vaezpour, S. M., Karimi, F.: $t$-best approximation in fuzzy normed spaces.Iran. J. Fuzzy Syst. 5 (2008), 93-99. Zbl 1171.46051, MR 2432015 |
Reference:
|
[15] Veeramani, P.: On some fixed point theorems on uniformly convex Banach spaces.J. Math. Anal. Appl. 167 (1992), 160-166. Zbl 0780.47047, MR 1165265, 10.1016/0022-247X(92)90243-7 |
Reference:
|
[16] Veeramani, P.: Best approximation in fuzzy metric spaces.J. Fuzzy Math. 9 (2001), 75-80. Zbl 0986.54006, MR 1822315 |
Reference:
|
[17] Zadeh, L. A.: Fuzzy sets.Inform. Acad Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X |
. |