Title:
|
Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras (English) |
Author:
|
Paseka, Jan |
Author:
|
Riečanová, Zdenka |
Author:
|
Wu, Junde |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
46 |
Issue:
|
6 |
Year:
|
2010 |
Pages:
|
953-970 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them. (English) |
Keyword:
|
non-classical logics |
Keyword:
|
D-posets |
Keyword:
|
effect algebras |
Keyword:
|
$MV$-algebras |
Keyword:
|
interval and order topology |
Keyword:
|
states |
MSC:
|
03G12 |
MSC:
|
03G25 |
MSC:
|
06F05 |
MSC:
|
08A55 |
MSC:
|
54H12 |
idZBL:
|
Zbl 1229.03055 |
idMR:
|
MR2797420 |
. |
Date available:
|
2011-04-12T12:43:02Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141459 |
. |
Reference:
|
[1] Beltrametti, E. G., Cassinelli, G.: The Logic of Quantum Mechanics.Addison-Wesley, Reading 1981. Zbl 0504.03026, MR 0635780 |
Reference:
|
[2] Chang, C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958) 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[3] Császár, A.: General Topology.Akadémiai Kiadó, Budapest 1978. |
Reference:
|
[4] Erné, M., Weck, S.: Order convergence in lattices.Rocky Mt. J. Math. 10 (1980), 805–818. MR 0595106, 10.1216/RMJ-1980-10-4-805 |
Reference:
|
[5] Frink, O.: Topology in lattices.Trans. Amer. Math. Soc. 51 (1942), 569–582. Zbl 0061.39305, MR 0006496 |
Reference:
|
[6] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra.Order 12 (1995), 91–106. MR 1336539, 10.1007/BF01108592 |
Reference:
|
[7] Gudder, S. P.: Sharply dominating effect algebras.Tatra Mt. Math. Publ. 15 (1998), 23–30. Zbl 0939.03073, MR 1655076 |
Reference:
|
[8] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras.BUSEFAL 80 (1999), 24–29. |
Reference:
|
[9] Jenča, G., Riečanová, Z.: A survey on sharp elements in unsharp Qquantum logics.J. Electr. Engrg. 52 (2001), 7–8, 237-239. |
Reference:
|
[10] Kalmbach, G.: Orthomodular Lattices.Kluwer Academic Publ. Dordrecht 1998. |
Reference:
|
[11] Katětov, M.: Remarks on Boolean algebras.Colloq. Math. 11 (1951), 229–235. MR 0049862 |
Reference:
|
[12] Kirchheimová, H., Riečanová, H.: Note on order convergence and order topology.In: B. Riečan and T. Neubrunn: Measure, Integral and Order, Appendix B, Ister Science (Bratislava) and Kluwer Academic Publishers, Dordrecht – Boston – London 1997. |
Reference:
|
[13] Kôpka, F.: Compatibility in D-posets.Interernat. J. Theor. Phys. 34 (1995), 1525–1531. MR 1353696, 10.1007/BF00676263 |
Reference:
|
[14] Qiang, Lei, Junde, Wu, Ronglu, Li: Interval topology of lattice effect algebras.Appl. Math. Lett. 22 (2009), 1003–1006. MR 2522989, 10.1016/j.aml.2009.01.008 |
Reference:
|
[15] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras.J. Electr. Engrg. 58 (2007), 7/S, 3–6. |
Reference:
|
[16] Paseka, J., Riečanová, Z.: Compactly generated de Morgan lattices, basic algebras and effect algebras.Internat. J. Theor. Phys. 49 (2010), 3216–3223. Zbl 1202.06007, MR 2738081, 10.1007/s10773-009-0011-4 |
Reference:
|
[17] Pulmannová, S., Riečanová, Z.: Compact topological orthomodular lattices.In: Contributions to General Algebra 7, Verlag Hölder – Pichler – Tempsky, Wien, Verlag B.G. Teubner, Stuttgart 1991, pp. 277–282. MR 1143091 |
Reference:
|
[18] Pulmannová, S., Riečanová, Z.: Blok finite atomic orthomodular lattices.J. Pure and Applied Algebra 89 (1993), 295–304. 10.1016/0022-4049(93)90058-2 |
Reference:
|
[19] Riečanová, Z.: On Order Continuity of Quantum Structures and Their Homomorphisms.Demonstratio Mathematica 29 (1996), 433–443. MR 1407855 |
Reference:
|
[20] Riečanová, Z.: Lattices and Quantum Logics with Separated Intervals Atomicity, Internat.J. Theor. Phys. 37 (1998), 191–197. MR 1637165, 10.1023/A:1026642028987 |
Reference:
|
[21] Riečanová, Z.: Compatibility and central elements in effect algebras.Tatra Mt. Math. Publ. 16 (1999), 151–158. MR 1725293 |
Reference:
|
[22] Riečanová, Z.: Archimedean and block-finite lattice effect algebras.Demonstratio Mathematica 33 (2000), 443–452. MR 1791464 |
Reference:
|
[23] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras.Internat. J. of Theor. Phys. 39 (2000), 231–237. MR 1762594, 10.1023/A:1003619806024 |
Reference:
|
[24] Riečanová, Z.: Orthogonal Sets in Effect Algebras.Demonstratio Mathematica 34 (2001), 525–532. Zbl 0989.03071, MR 1853730 |
Reference:
|
[25] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras.Internat. J. of Theor. Phys. 41 (2002), 1511–1524. Zbl 1016.81005, MR 1932844, 10.1023/A:1020136531601 |
Reference:
|
[26] Riečanová, Z.: Continuous Lattice Effect Algebras Admitting Order-Continuous States.Fuzzy Sests and Systems 136 (2003), 41–54. Zbl 1022.03047, MR 1978468 |
Reference:
|
[27] Riečanová, Z.: Order-topological lattice effect algebras.In: Contributions to General Algebra 15, Proc. Klagenfurt Workshop 2003 on General Algebra, Klagenfurt 2003, pp. 151–160. MR 2082379 |
Reference:
|
[28] Riečanová, Z., Paseka, J.: State smearing theorems and the existence of states on some atomic lattice effect algebras.J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018. |
Reference:
|
[29] Sarymsakov, T.A., Ajupov, S.A., Chadzhijev, Z., Chilin, V.J.: Ordered algebras.FAN, Tashkent, (in Russian), 1983. MR 0781349 |
Reference:
|
[30] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge.Archiv d. Math. 7 (1956), 241–249. MR 0084484 |
. |