Previous |  Up |  Next

Article

Title: Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras (English)
Author: Paseka, Jan
Author: Riečanová, Zdenka
Author: Wu, Junde
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 953-970
Summary lang: English
.
Category: math
.
Summary: We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them. (English)
Keyword: non-classical logics
Keyword: D-posets
Keyword: effect algebras
Keyword: $MV$-algebras
Keyword: interval and order topology
Keyword: states
MSC: 03G12
MSC: 03G25
MSC: 06F05
MSC: 08A55
MSC: 54H12
idZBL: Zbl 1229.03055
idMR: MR2797420
.
Date available: 2011-04-12T12:43:02Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141459
.
Reference: [1] Beltrametti, E. G., Cassinelli, G.: The Logic of Quantum Mechanics.Addison-Wesley, Reading 1981. Zbl 0504.03026, MR 0635780
Reference: [2] Chang, C. C.: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958) 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] Császár, A.: General Topology.Akadémiai Kiadó, Budapest 1978.
Reference: [4] Erné, M., Weck, S.: Order convergence in lattices.Rocky Mt. J. Math. 10 (1980), 805–818. MR 0595106, 10.1216/RMJ-1980-10-4-805
Reference: [5] Frink, O.: Topology in lattices.Trans. Amer. Math. Soc. 51 (1942), 569–582. Zbl 0061.39305, MR 0006496
Reference: [6] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra.Order 12 (1995), 91–106. MR 1336539, 10.1007/BF01108592
Reference: [7] Gudder, S. P.: Sharply dominating effect algebras.Tatra Mt. Math. Publ. 15 (1998), 23–30. Zbl 0939.03073, MR 1655076
Reference: [8] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras.BUSEFAL 80 (1999), 24–29.
Reference: [9] Jenča, G., Riečanová, Z.: A survey on sharp elements in unsharp Qquantum logics.J. Electr. Engrg. 52 (2001), 7–8, 237-239.
Reference: [10] Kalmbach, G.: Orthomodular Lattices.Kluwer Academic Publ. Dordrecht 1998.
Reference: [11] Katětov, M.: Remarks on Boolean algebras.Colloq. Math. 11 (1951), 229–235. MR 0049862
Reference: [12] Kirchheimová, H., Riečanová, H.: Note on order convergence and order topology.In: B. Riečan and T. Neubrunn: Measure, Integral and Order, Appendix B, Ister Science (Bratislava) and Kluwer Academic Publishers, Dordrecht – Boston – London 1997.
Reference: [13] Kôpka, F.: Compatibility in D-posets.Interernat. J. Theor. Phys. 34 (1995), 1525–1531. MR 1353696, 10.1007/BF00676263
Reference: [14] Qiang, Lei, Junde, Wu, Ronglu, Li: Interval topology of lattice effect algebras.Appl. Math. Lett. 22 (2009), 1003–1006. MR 2522989, 10.1016/j.aml.2009.01.008
Reference: [15] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras.J. Electr. Engrg. 58 (2007), 7/S, 3–6.
Reference: [16] Paseka, J., Riečanová, Z.: Compactly generated de Morgan lattices, basic algebras and effect algebras.Internat. J. Theor. Phys. 49 (2010), 3216–3223. Zbl 1202.06007, MR 2738081, 10.1007/s10773-009-0011-4
Reference: [17] Pulmannová, S., Riečanová, Z.: Compact topological orthomodular lattices.In: Contributions to General Algebra 7, Verlag Hölder – Pichler – Tempsky, Wien, Verlag B.G. Teubner, Stuttgart 1991, pp. 277–282. MR 1143091
Reference: [18] Pulmannová, S., Riečanová, Z.: Blok finite atomic orthomodular lattices.J. Pure and Applied Algebra 89 (1993), 295–304. 10.1016/0022-4049(93)90058-2
Reference: [19] Riečanová, Z.: On Order Continuity of Quantum Structures and Their Homomorphisms.Demonstratio Mathematica 29 (1996), 433–443. MR 1407855
Reference: [20] Riečanová, Z.: Lattices and Quantum Logics with Separated Intervals Atomicity, Internat.J. Theor. Phys. 37 (1998), 191–197. MR 1637165, 10.1023/A:1026642028987
Reference: [21] Riečanová, Z.: Compatibility and central elements in effect algebras.Tatra Mt. Math. Publ. 16 (1999), 151–158. MR 1725293
Reference: [22] Riečanová, Z.: Archimedean and block-finite lattice effect algebras.Demonstratio Mathematica 33 (2000), 443–452. MR 1791464
Reference: [23] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras.Internat. J. of Theor. Phys. 39 (2000), 231–237. MR 1762594, 10.1023/A:1003619806024
Reference: [24] Riečanová, Z.: Orthogonal Sets in Effect Algebras.Demonstratio Mathematica 34 (2001), 525–532. Zbl 0989.03071, MR 1853730
Reference: [25] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras.Internat. J. of Theor. Phys. 41 (2002), 1511–1524. Zbl 1016.81005, MR 1932844, 10.1023/A:1020136531601
Reference: [26] Riečanová, Z.: Continuous Lattice Effect Algebras Admitting Order-Continuous States.Fuzzy Sests and Systems 136 (2003), 41–54. Zbl 1022.03047, MR 1978468
Reference: [27] Riečanová, Z.: Order-topological lattice effect algebras.In: Contributions to General Algebra 15, Proc. Klagenfurt Workshop 2003 on General Algebra, Klagenfurt 2003, pp. 151–160. MR 2082379
Reference: [28] Riečanová, Z., Paseka, J.: State smearing theorems and the existence of states on some atomic lattice effect algebras.J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018.
Reference: [29] Sarymsakov, T.A., Ajupov, S.A., Chadzhijev, Z., Chilin, V.J.: Ordered algebras.FAN, Tashkent, (in Russian), 1983. MR 0781349
Reference: [30] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge.Archiv d. Math. 7 (1956), 241–249. MR 0084484
.

Files

Files Size Format View
Kybernetika_46-2010-6_4.pdf 322.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo