Previous |  Up |  Next


Title: Quantum logics and bivariable functions (English)
Author: Drobná, Eva
Author: Nánásiová, Oĺga
Author: Valášková, Ĺubica
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 6
Year: 2010
Pages: 982-995
Summary lang: English
Category: math
Summary: New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice. (English)
Keyword: finite atomistic quantum logic
Keyword: orthomodular lattice
Keyword: conditional state
Keyword: s-map
Keyword: d-map
Keyword: bivariable functions
Keyword: modeling infimum measure
Keyword: supremum measure
Keyword: simultaneous measurements
MSC: 03G10
MSC: 03G12
MSC: 03G25
MSC: 03H05
idZBL: Zbl 1229.03054
idMR: MR2797422
Date available: 2011-04-12T12:44:47Z
Last updated: 2013-09-22
Stable URL:
Reference: [1] Al-Adilee, A. M., Nánásiová, O.: Copula and s-map on a quantum logic.Inform. Sci. 179 (2009), 4199–4207. Zbl 1180.81005, MR 2722377, 10.1016/j.ins.2009.08.011
Reference: [2] Dohnal, G.: Markov property in quantum logic.A reflection. Inform. Sci. 179 (2009), 485–491. Zbl 1161.81309, MR 2490187, 10.1016/j.ins.2008.10.008
Reference: [3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structure.Kluwer Acad. Publishers, Dortrecht/Boston/London, Ister Science, Bratislava 2000. MR 1861369
Reference: [4] Greechie, R. J.: Orthogonal lattices admitting no states.J. Combin. Theory, Ser. A10 (1971), 119–132. MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [5] Kalmbach, G.: Orthomodular Lattices.Academic Press, London 1983. Zbl 0528.06012, MR 0716496
Reference: [6] Nánásiová, O.: Map for simultaneous measurements for a quantum logic.Internat. J. Theoret. Phys. 42 (2003), 1889–1903. Zbl 1053.81006, MR 2023910, 10.1023/A:1027384132753
Reference: [7] Nánásiová, O.: Principle conditioning.Internat. J. Theoret. Phys. 43 (2004), 1757–1767. Zbl 1074.81006, MR 2108309, 10.1023/B:IJTP.0000048818.23615.28
Reference: [8] Nánásiová, O., Khrennikov, A.: Representation theorem for observables on a quantum system. Internat. J. Theoret. Phys. 45 (2006), 469–482. MR 2241859, 10.1007/s10773-006-9030-6
Reference: [9] Nánásiová, O., Khrennikov, A.: Compatibility and marginality.Internat. J. Theoret. Phys. 46 (2007) 1083–1095. Zbl 1133.81002, MR 2330390, 10.1007/s10773-006-9034-2
Reference: [10] Nánásiová, O., Pulmannová, S.: S-map and tracial states.Inform. Sci. 179 (2009) 515–520. Zbl 1161.81311, MR 2490191, 10.1016/j.ins.2008.07.032
Reference: [11] Nánásiová, O., Trokanová, K., Žembery, I.: Commutative and non commutative s-maps.Forum Statist. Slovacum 2 (2007) 172–177.
Reference: [12] Nánásiová, O., Valášková, L’.: Maps on a quantum logic.Soft Computing (2009). doi:10.1007/s00500-009-0483-4
Reference: [13] Nánásiová, O., Valášková, L’.: Marginality and triangle inequality Internat.J. Theoret. Phys. (2010), accepted. MR 2738079
Reference: [14] Navara, M.: An othomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7–12. MR 1191871, 10.1090/S0002-9939-1994-1191871-X
Reference: [15] Neumann, J. von: Mathematische Grundlagen der Quantenmechanik.Springer-Verlag, Berlin 1932. MR 0223138
Reference: [16] Pták, P., Pulmannová, S.: Quantum Logics.Kluwer Acad. Press, Bratislava 1991. MR 1176314
Reference: [17] Varadarajan, V.: Geometry of Quantum Theory.D. Van Nostrand, Princeton, New Jersey 1968. Zbl 0155.56802, MR 0471674


Files Size Format View
Kybernetika_46-2010-6_6.pdf 251.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo