Previous |  Up |  Next


thermodynamic traffic gas; clearance distribution; spectral rigidity
We introduce an one-dimensional thermodynamical particle model which is efficient in predictions about a microscopical structure of animal/human groups. For such a model we present analytical calculations leading to formulae for time clearance distribution as well as for time spectral rigidity. Furthermore, the results obtained are reformulated in terms of vehicular traffic theory and consecutively compared to experimental traffic data.
[1] Appert-Rolland, C.: Experimental study of short-range interactions in vehicular traffic. Phys. Rev. E 80 (2009), 036102(1)–036102(5). DOI 10.1103/PhysRevE.80.036102
[2] Baik, J., Borodin, A., Deift, P., Suidan, T.: A model for the bus system in Cuernavaca (Mexico). J. Phys. A: Math. Gen. 39 (2006), 8965–8975. DOI 10.1088/0305-4470/39/28/S11 | MR 2240467 | Zbl 1134.90438
[3] Barabási, A. L.: The origin of bursts and heavy tails in human dynamics. Nature (London) 435 (2005), 207–211. DOI 10.1038/nature03459
[4] Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73 (2001), 1067–1141. DOI 10.1103/RevModPhys.73.1067
[5] Helbing, D., Treiber, M., Kesting, A.: Understanding interarrival and interdeparture time statistics from interactions in queuing systems. Physica A 363 (2006), 62–72. DOI 10.1016/j.physa.2006.01.048
[6] Chowdhury, D., Santen, L., Schadschneider, A.: Statistical Physics of Vehicular Traffic and Some Related Systems. Physics Reports 329 (2000), 199–369. DOI 10.1016/S0370-1573(99)00117-9 | MR 1755758
[7] Krbálek, M., Helbing, D.: Determination of interaction potentials in freeway traffic from steady-state statistics. Physica A 333 (2004), 370–378. DOI 10.1016/j.physa.2003.10.059 | MR 2100226
[8] Jezbera, D., Kordek, D., Křiž, J., Šeba, P., Šroll, P.: Walkers on the circle. J. Stat. Mech. (2010), L01001(1)–L01001(6). DOI 10.1088/1742-5468/2010/01/L01001
[9] Krbálek, M.: Equilibrium distributions in a thermodynamical traffic gas. J. Phys. A: Math. Theor. 40 (2007), 5813–5821. DOI 10.1088/1751-8113/40/22/004 | MR 2345147 | Zbl 1189.82116
[10] Krbálek, M.: Inter-vehicle gap statistics on signal-controlled crossroads. J. Phys. A: Math. Theor. 41 (2008), 205004(1)–205004(8). DOI 10.1088/1751-8113/41/20/205004 | MR 2450507 | Zbl 1146.90367
[11] Krbálek, M., Šeba, P.: Spectral rigidity of vehicular streams (random matrix theory approach). J. Phys. A: Math. Theor. 42 (2009), 345001(1)–345001(10). DOI 10.1088/1751-8113/42/34/345001 | MR 2530234 | Zbl 1134.90438
[12] Mehta, M. L.: Random Matrices (revised and enlarged). Academic Press, New York 1991. MR 1083764
[13] Moon, H., Conlon, D. E., Humphrey, S. E., Quigley, N., Devers, C. E., Nowakowski, J. M.: Group decision process and incrementalism in organizational decision making. Organizational Behavior and Human Decision Processes 92 (2003), 67–79.
[14] Oliveira, J. G., Barabási, A. L.: Human dynamics: Darwin and Einstein correspondence patterns. Nature (London) 437 (2005), 1251–1253. DOI 10.1038/4371251a
[15] Oliveira, J. G., Vazquez, A.: Impact of interactions on human dynamics. Physica A 388 (2009), 187–192. DOI 10.1016/j.physa.2008.08.022
[16] Orosz, G., Wilson, R. E., Szalai, R., Stépán, G.: Exciting traffic jams: Nonlinear phenomena behind traffic jam formation on highways. Phys. Rev. E 80 (2009), 046205(1)–046205(12). DOI 10.1103/PhysRevE.80.046205
[17] Smith, D., Marklof, J., Wilson, R. E.: Improved power law potentials for highway traffic flow. Submitted to Eur. Phys. J. B (2008), preprint
[18] Sopasakis, A.: Stochastic noise approach to traffic flow modeling. Physica A 342 (2004), 741–754. DOI 10.1016/j.physa.2004.05.040
[19] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S., Yukawa, S.: Traffic jams without bottlenecks–experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics, 10 (2008), 033001(1)–033001(8). DOI 10.1088/1367-2630/10/3/033001
Partner of
EuDML logo