Previous |  Up |  Next

Article

Title: An analytic method for the initial value problem of the electric field system in vertical inhomogeneous anisotropic media (English)
Author: Yakhno, Valery
Author: Sevimlican, Ali
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 3
Year: 2011
Pages: 315-339
Summary lang: English
.
Category: math
.
Summary: The time-dependent system of partial differential equations of the second order describing the electric wave propagation in vertically inhomogeneous electrically and magnetically biaxial anisotropic media is considered. A new analytical method for solving an initial value problem for this system is the main object of the paper. This method consists in the following: the initial value problem is written in terms of Fourier images with respect to lateral space variables, then the resulting problem is reduced to an operator integral equation. After that the operator integral equation is solved by the method of successive approximations. Finally, a solution of the original initial value problem is found by the inverse Fourier transform. (English)
Keyword: equations of electromagnetic theory
Keyword: hyperbolic system of second order partial differential equations
Keyword: initial value problem
Keyword: analytical method
Keyword: Fourier transform
MSC: 35A01
MSC: 35L15
MSC: 35L52
MSC: 35L55
MSC: 35Q60
MSC: 78A40
idZBL: Zbl 1224.35392
idMR: MR2800581
DOI: 10.1007/s10492-011-0019-y
.
Date available: 2011-05-17T08:30:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141490
.
Reference: [1] Andersen, N. D.: Real Paley-Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space.Pac. J. Math. 213 (2004), 1-13. Zbl 1049.43004, MR 2040247, 10.2140/pjm.2004.213.1
Reference: [2] Apostol, T. M.: Calculus I.Blaisdell Publishing Company Waltham, Massachusetts-Toronto-London (1967). MR 0214705
Reference: [3] Bang, H. H.: Functions with bounded spectrum.Trans. Am. Math. Soc. 347 (1995), 1067-1080. Zbl 0828.42009, MR 1283539, 10.1090/S0002-9947-1995-1283539-1
Reference: [4] Burridge, R., Qian, J.: The fundamental solution of the time-dependent system of crystal optics.Eur. J. Appl. Math. 17 (2006), 63-94. Zbl 1160.78001, MR 2228972, 10.1017/S0956792506006486
Reference: [5] Cohen, G. C.: Higher-Order Numerical Methods for Transient Wave Equations.Springer Berlin (2002). Zbl 0985.65096, MR 1870851
Reference: [6] Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. 2.Interscience Publishers New York-London (1962).
Reference: [7] Eom, H. J.: Electromagnetic Wave Theory for Boundary-Value Problems.Springer Berlin (2004). Zbl 1053.78001, MR 2081952
Reference: [8] Evans, L. C.: Partial Differential Equations.AMS Providence (1998). Zbl 0902.35002, MR 1625845
Reference: [9] Gronwall, T. H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations.Ann. Math. 20 (1919), 292-296. MR 1502565, 10.2307/1967124
Reference: [10] Krowne, C. M.: Spectral-domain determination of propagation constant in biaxial planar media.Int. J. Electron. 3 (1985), 315-332. 10.1080/00207218508920702
Reference: [11] Ludwig, D.: Conical refraction in crystal optics and hydromagnetics.Commun. Pure Appl. Math. 14 (1961), 113-124. Zbl 0112.21202, MR 0127703, 10.1002/cpa.3160140203
Reference: [12] Melrose, R. B., Uhlmann, G. A.: Microlocal structure of involutive conical refraction.Duke Math. J. 46 (1979), 571-582. Zbl 0422.58026, MR 0544247, 10.1215/S0012-7094-79-04630-1
Reference: [13] Ortner, N., Wagner, P.: Fundamental matrices of homogeneous hyperbolic systems. Applications to cyrystal optics, elastodynamics, and piezoelectromagetism.ZAMM, Z. Agew. Math. Mech. 84 (2004), 314-346. MR 2057145, 10.1002/zamm.200310130
Reference: [14] Sheen, J.: Time harmonic electromagnetic fields in an biaxial anisotropic medium.J. Electromagn. Waves Appl. 19 (2005), 754-767. MR 2191918, 10.1163/1569393054069082
Reference: [15] Tuan, V. K., Zayed, A. I.: Paley-Wiener-type theorems for a class of integral transforms.J. Math. Anal. Appl. 266 (2002), 200-226. Zbl 0998.44001, MR 1876778, 10.1006/jmaa.2001.7740
Reference: [16] Uhlmann, G. A.: Light intensity distribution in conical refraction.Commun. Pured Appl. Math. 35 (1982), 69-80. Zbl 0516.35055, MR 0637495, 10.1002/cpa.3160350104
Reference: [17] Vladimirov, V. S.: Equations of Mathematical Physics.Marcel Dekker New York (1971). Zbl 0231.35002, MR 0268497
Reference: [18] Yakhno, V. G.: Constructing Green's function for time-depending Maxwell system in anisotropic dielectrics.J. Phys. A: Math. Gen. 38 (2005), 2277-2287. MR 2126517, 10.1088/0305-4470/38/10/015
Reference: [19] Yakhno, V. G., Yakhno, T. M., Kasap, M.: A novel approach for modelling and simulation of electromagnetic waves in anisotropic dielectrics.Int. J. Solids Struct. 43 (2006), 6261-6276. MR 2265178, 10.1016/j.ijsolstr.2005.07.028
Reference: [20] Yakhno, V. G.: Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials.Int. J. Eng. Sci. 46 (2008), 411-426. Zbl 1213.78029, MR 2401286, 10.1016/j.ijengsci.2007.12.005
.

Files

Files Size Format View
AplMat_56-2011-3_5.pdf 337.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo