Previous |  Up |  Next

Article

Title: An accurate active set Newton algorithm for large scale bound constrained optimization (English)
Author: Sun, Li
Author: He, Guoping
Author: Wang, Yongli
Author: Zhou, Changyin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 3
Year: 2011
Pages: 297-314
Summary lang: English
.
Category: math
.
Summary: A new algorithm for solving large scale bound constrained minimization problems is proposed. The algorithm is based on an accurate identification technique of the active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the active set yields the global convergence of the new algorithm. In particular, the convergence rate is superlinear without requiring the strict complementarity assumption. Numerical tests demonstrate the efficiency and performance of the present strategy and its comparison with some existing active set strategies. (English)
Keyword: active set
Keyword: bound constraints
Keyword: Newton method
Keyword: strict complementarity
MSC: 90C06
MSC: 90C30
MSC: 90C53
idZBL: Zbl 1224.90177
idMR: MR2800580
DOI: 10.1007/s10492-011-0018-z
.
Date available: 2011-05-17T08:29:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141488
.
Reference: [1] Coleman, T. F., Li, Y.: On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds.Math. Program. 67 (1994), 189-224. Zbl 0842.90106, MR 1305566, 10.1007/BF01582221
Reference: [2] Coleman, T. F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds.SIAM J. Optim. 6 (1996), 418-445. Zbl 0855.65063, MR 1387333, 10.1137/0806023
Reference: [3] Conn, A. R., Gould, N. I. M., Toint, Ph. L.: Testing a class of methods for solving minimization problems with simple bounds on the variables.ACM Trans. Math. Softw. 7 (1981), 17-41. MR 1438096
Reference: [4] Conn, A. R., Gould, N. I. M., Toint, Ph. L.: Global convergence of a class of trust region algorithms for optimization with simple bounds.SIAM J. Numer. Anal. 25 (1988), 433-460. Zbl 0643.65031, MR 0933734, 10.1137/0725029
Reference: [5] Conn, A. R., Gould, N. I. M., Toint, Ph. L.: Correction to the paper on global convergence of a class of trust region algorithms for optimization with simple bounds.SIAM J. Numer. Anal. 26 (1989), 764-767. Zbl 0673.65033, MR 0997667, 10.1137/0726044
Reference: [6] Dennis, J. E., Moré, J. J.: A characterization of superlinear convergence and its application to quasi-Newton methods.Math. Comput. 28 (1974), 549-560. MR 0343581, 10.1090/S0025-5718-1974-0343581-1
Reference: [7] Dostál, Z.: A proportioning based algorithm with rate of convergence for bound constrained quadratic programming.Numer. Algorithms 34 (2003), 293-302. Zbl 1037.65061, MR 2043903, 10.1023/B:NUMA.0000005347.98806.b2
Reference: [8] Facchinei, F.: Minimization of SC$^{1}$ functions and the Maratos effect.Oper. Res. Lett. 17 (1995), 131-137. MR 1342260, 10.1016/0167-6377(94)00059-F
Reference: [9] Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints.SIAM J. Optim. 9 (1998), 14-32. Zbl 0960.90080, MR 1660110, 10.1137/S1052623496305882
Reference: [10] Facchinei, F., Júdice, J., Soares, J.: An active set Newton algorithm for large-scale nonlinear programs with box constraints.SIAM J. Optim. 8 (1998), 158-186. MR 1617441, 10.1137/S1052623493253991
Reference: [11] Facchinei, F., Júdice, J., Soares, J.: Generating box-constrained optimization problems.ACM Trans. Math. Softw. 23 (1997), 443-447. 10.1145/275323.275331
Reference: [12] Facchinei, F., Lucidi, S.: Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems.J. Optimization Theory Appl. 85 (1995), 265-289. Zbl 0830.90125, MR 1333788, 10.1007/BF02192227
Reference: [13] Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization.SIAM J. Optim. 12 (2002), 1100-1125. Zbl 1035.90103, MR 1922511, 10.1137/S1052623499359890
Reference: [14] Fan, R. E., Chen, P. H., Lin, C. J.: Working set selection using second order information for training support vector machines.J. Mach. Learn. Res. 6 (2005), 1889-1918. Zbl 1222.68198, MR 2249875
Reference: [15] Gill, P. E., Murray, W., Wright, M. H.: Practical Optimization.Academic Press London (1981). Zbl 0503.90062, MR 0634376
Reference: [16] Hager, W. W., Zhang, H.: A new active set algorithm for box constrained optimization.SIAM J. Optim. 17 (2006), 526-557. Zbl 1165.90570, MR 2247750, 10.1137/050635225
Reference: [17] Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption.Math. Program. 86 (1999), 615-635. Zbl 0945.49023, MR 1733741, 10.1007/s101070050107
Reference: [18] Keerthi, S. S., Gilbert, E. G.: Convergence of a generalized SMO algorithm for SVM classifier design.Mach. Learn. 46 (2002), 351-360. Zbl 0998.68109, 10.1023/A:1012431217818
Reference: [19] Lescrenier, M.: Convergence of trust region algorithms for optimization with bounds when strict complementarity does not hold.SIAM J. Numer. Anal. 28 (1991), 476-495. Zbl 0726.65068, MR 1087515, 10.1137/0728026
Reference: [20] Lin, C. J., Moré, J. J.: Newton's method for large bound-constrained optimization problems.SIAM J. Optim. 9 (1999), 1100-1127. Zbl 0957.65064, MR 1724778, 10.1137/S1052623498345075
Reference: [21] Moré, J. J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints.SIAM J. Optim. 1 (1991), 93-113. MR 1094793, 10.1137/0801008
Reference: [22] Ni, Q., Yuan, Y.: A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization.Math. Comput. 66 (1997), 1509-1520. Zbl 0886.65065, MR 1422793, 10.1090/S0025-5718-97-00866-1
Reference: [23] Nocedal, J., Wright, S. J.: Numerical Optimization.Springer New York (2006). Zbl 1104.65059, MR 2244940
Reference: [24] Oberlin, C., Wright, S. J.: Active set identification in nonlinear programming.SIAM J. Optim. 17 (2006), 577-605. Zbl 1174.90813, MR 2247752, 10.1137/050626776
Reference: [25] Pillo, G. Di, Facchinei, F., Grippo, L.: An $RQP$ algorithm using a differentiable exact penalty function for inequality constrained problems.Math. Program. 55 (1992), 49-68. Zbl 0767.90060, MR 1163293, 10.1007/BF01581190
Reference: [26] Polyak, B. T.: The conjugate gradient method in extremal problems.U.S.S.R. Comput. Math. Math. Phys. 9 (1969), 94-112. Zbl 0191.49003, 10.1016/0041-5553(69)90035-4
Reference: [27] Schittkowski, K.: More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, Vol. 282.Springer Berlin (1987). MR 1117683
Reference: [28] Sun, L., He, G. P., Wang, Y. L., Fang, L.: An active set quasi-Newton method with projected search for bound constrained minimization.Comput. Math. Appl. 58 (2009), 161-170. Zbl 1189.90160, MR 2535978, 10.1016/j.camwa.2009.03.085
Reference: [29] Sun, L., Fang, L., He, G. P.: An active set strategy based on the multiplier function or the gradient.Appl. Math. 55 (2010), 291-304. Zbl 1224.90176, MR 2737938, 10.1007/s10492-010-0022-8
Reference: [30] Xiao, Y. H., Wei, Z. X.: A new subspace limited memory BFGS algorithm for large-scale bound constrained optimization.Appl. Math. Comput. 185 (2007), 350-359. Zbl 1114.65069, MR 2298454, 10.1016/j.amc.2006.06.119
.

Files

Files Size Format View
AplMat_56-2011-3_4.pdf 305.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo