Previous |  Up |  Next

Article

Title: Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability (English)
Author: Ben Amar, Afif
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 2
Year: 2011
Pages: 177-190
Summary lang: English
.
Category: math
.
Summary: In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces. (English)
Keyword: fixed point theorems
Keyword: Henstock-Kurzweil-Pettis integral
Keyword: Volterra equation
Keyword: measure of weak noncompactness
MSC: 26A39
MSC: 28B05
MSC: 45D05
MSC: 45N05
MSC: 47H10
idZBL: Zbl 1240.45010
idMR: MR2849044
.
Date available: 2011-05-17T08:33:24Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141494
.
Reference: [1] Agarwal R., O'Regan D., Sikorska-Nowak A.: The set of solutions of integrodifferential equations and the Henstock-Kurzweil-Pettis integral in Banach spaces.Bull. Austral. Math. Soc. 78 (2008), 507–522. MR 2472285, 10.1017/S0004972708000944
Reference: [2] Aliprantis C.D., Border K.C.: Infinite Dimensional Analysis.third edition, Springer, Berlin, 2006. Zbl 1156.46001, MR 2378491
Reference: [3] Ben Amar A., Mnif M.: Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation.Math. Methods Appl. Sci. 33 (2010), no. 1, 80–90. Zbl 1193.47056, MR 2591226
Reference: [4] Bugajewski D.: On the existence of weak solutions of integral equations in Banach spaces.Comment. Math. Univ. Carolin. 35 (1994), no. 1, 35–41. Zbl 0816.45012, MR 1292580
Reference: [5] Chew T.S., Flordeliza F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differential Integral Equations 4 (1991), 861–868. Zbl 0733.34004, MR 1108065
Reference: [6] Cichoń M., Kubiaczyk I., Sikorska A.: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem.Czechoslovak. Math. J. 54 (129) (2004), 279–289. MR 2059250, 10.1023/B:CMAJ.0000042368.51882.ab
Reference: [7] Cichoń M.: Weak solutions of differential equations in Banach spaces.Discuss. Math. Differential Incl. 15 (1995), 5–14. MR 1344523
Reference: [8] Cichoń M., Kubiaczyk I.: On the set of solutions of the Cauchy problem in Banach spaces.Arch. Math. (Basel) 63 (1994), 251–257. MR 1287254, 10.1007/BF01189827
Reference: [9] Cramer E., Lakshmikantham V., Mitchell A.R.: On the existence of weak solution of differential equations in nonreflexive Banach spaces.Nonlinear Anal. 2 (1978), 169–177. MR 0512280
Reference: [10] DeBlasi F.S.: On a property of the unit sphere in Banach space.Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 21 (1977), 259–262. MR 0482402
Reference: [11] Diestel J., Uhl J.J.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, R.I., 1977. Zbl 0521.46035, MR 0453964
Reference: [12] Di Piazza L.: Kurzweil-Henstock type integration on Banach spaces.Real Anal. Exchange 29 (2003/04), no. 2, 543–555. Zbl 1083.28007, MR 2083796
Reference: [13] Dugundji J.: Topology.Allyn and Bacon, Inc., Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [14] Federson M., Bianconi R.: Linear integral equations of Volterra concerning Henstock integrals.Real Anal. Exchange 25 (1999/00), 389–417. Zbl 1015.45001, MR 1758896
Reference: [15] Federson M., Táboas P.: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals.Nonlinear Anal. 50 (1998), 389–407. MR 1906469, 10.1016/S0362-546X(01)00769-6
Reference: [16] Gamez J.L., Mendoza J.: On Denjoy-Dunford and Denjoy-Pettis integrals.Studia Math. 130 (1998), 115–133. Zbl 0971.28009, MR 1623348
Reference: [17] Gordon R.A.: Rienmann integration in Banach spaces.Rocky Mountain J. Math. (21) (1991), no. 3, 923–949. MR 1138145, 10.1216/rmjm/1181072923
Reference: [18] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994. Zbl 0807.26004, MR 1288751
Reference: [19] Kelley J.: General Topology.D. Van Nostrad Co., Inc., Toronto-New York-London, 1955. Zbl 0518.54001, MR 0070144
Reference: [20] Kubiaczyk I., Szufla S.: Kenser's theorem for weak solutions of ordinary differential equations in Banach spaces.Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 99–103. MR 0710975
Reference: [21] Kubiaczyk I.: On the existence of solutions of differential equations in Banach spaces.Bull. Polish Acad. Sci. Math. 33 (1985), 607–614. Zbl 0607.34055, MR 0849409
Reference: [22] Kurtz D.S., Swartz C.W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane.World Scientific, Singapore, 2004. Zbl 1072.26005, MR 2081182
Reference: [23] Martin R.H.: Nonlinear Operators and Differential Equations in Banach Spaces.Wiley-Interscience, New York-London-Sydney, 1976. Zbl 0333.47023, MR 0492671
Reference: [24] Mitchell A.R., Smith C.: An existence theorem for weak solutions of differential equations in Banach spaces.in Nonlinear Equations in Abstract Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex, 1977), pp. 387–403, Academic Press, New York, 1978. Zbl 0452.34054, MR 0502554
Reference: [25] Lakshmikantham V., Leela S.: Nonlinear Differential Equations in Abstract Spaces.Pergamon Press, Oxford-New York, 1981. Zbl 0456.34002, MR 0616449
Reference: [26] Lee P.Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis, 2, World Scientific, Teaneck, NJ, 1989. Zbl 0699.26004, MR 1050957
Reference: [27] Liu L., Guo F., Wu C., Wu Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces.J. Math. Anal. Appl. 309 (2005), 638–649. Zbl 1080.45005, MR 2154141, 10.1016/j.jmaa.2004.10.069
Reference: [28] O'Regan D.: Operator equations in Banach spaces relative to the weak topology.Arch. Math. (Basel) 71 (1998), 123–136. Zbl 0918.47053, MR 1631480, 10.1007/s000130050243
Reference: [29] Rudin W.: Functional Analysis.2nd edition, McGraw-Hill, New York, 1991. Zbl 0867.46001, MR 1157815
Reference: [30] Satco B.: A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integrals and applications.Czechoslovak Math. J. 56(131) (2006), 1029–1047. MR 2261675, 10.1007/s10587-006-0078-5
Reference: [31] Satco B.: Volterra integral inclusions via Henstock-Kurzweil-Pettis integral.Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87–101. Zbl 1131.45001, MR 2330782, 10.7151/dmdico.1066
Reference: [32] Satco B.: Existence results for Urysohn integral inclusions involving the Henstock integral.J. Math. Anal. Appl. 336 (2007), 44–53. Zbl 1123.45004, MR 2348489, 10.1016/j.jmaa.2007.02.050
Reference: [33] Schwabik S.: The Perron integral in ordinary differential equations.Differential Integral Equations 6 (1993), 863–882. Zbl 0784.34006, MR 1222306
Reference: [34] Schwabik S., Guoju Y.: Topics in Banach Space Integration.World Scientific, Hackensack, NJ, 2005. Zbl 1088.28008, MR 2167754
Reference: [35] Sikorska A.: Existence theory for nonlinear Volterra integral and differential equations.J. Inequal. Appl. 6 (3) (2001), 325–338. Zbl 0992.45006, MR 1889019
Reference: [36] Sikorska-Nowak A.: Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals.Demonstratio Math. 35 (2002), no. 1, 49–60. Zbl 1011.34066, MR 1883943
Reference: [37] Sikorska-Nowak A.: On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals.Ann. Polon. Math. 83 (2004), no. 3,257–267. Zbl 1101.45006, MR 2111712, 10.4064/ap83-3-7
Reference: [38] Sikorska-Nowak A.: The existence theory for the differential equation $x^{(m)}t=f(t,x)$ in Banach spaces and Henstock-Kurzweil integral.Demonstratio Math. 40 (2007), no. 1, 115–124. Zbl 1128.34037, MR 2330370
Reference: [39] Sikorska-Nowak A.: Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals.Discuss. Math. Differ. Incl. Control Optim. 27 (2007), 315–327. Zbl 1149.34053, MR 2413816, 10.7151/dmdico.1087
Reference: [40] Sikorska-Nowak A.: Existence of solutions of nonlinear integral equations and Henstock-Kurzweil integrals.Comment. Math. Prace Mat. 47 (2007), no. 2, 227–238. Zbl 1178.45016, MR 2377959
Reference: [41] Sikorska-Nowak A.: Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces.J. Appl. Math. 2007, article ID 31572, 12 pp. Zbl 1148.26010, MR 2317885
Reference: [42] Sikorska-Nowak A.: Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals.Dynam. Systems Appl. 17 (2008), 97–107. Zbl 1154.45011, MR 2433893
Reference: [43] Szufla S.: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 407–413. Zbl 0384.34039, MR 0492684
Reference: [44] Szufla S.: Sets of fixed points of nonlinear mappings in functions spaces.Funkcial. Ekvac. 22 (1979), 121–126. MR 0551256
Reference: [45] Szufla S.: On the application of measure of noncompactness to existence theorems.Rend. Sem. Mat. Univ. Padova 75 (1986), 1–14. Zbl 0589.45007, MR 0847653
Reference: [46] Szufla S.: On the Kneser-Hukuhara property for integral equations in locally convex spaces.Bull. Austral. Math. Soc. 36 (1987), 353–360. Zbl 0619.45003, MR 0923817, 10.1017/S0004972700003646
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-2_2.pdf 267.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo