Previous |  Up |  Next

Article

Title: Comparison game on Borel ideals (English)
Author: Hrušák, Michael
Author: Meza-Alcántara, David
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 2
Year: 2011
Pages: 191-204
Summary lang: English
.
Category: math
.
Summary: We propose and study a “classification” of Borel ideals based on a natural infinite game involving a pair of ideals. The game induces a pre-order $\sqsubseteq$ and the corresponding equivalence relation. The pre-order is well founded and “almost linear”. We concentrate on $F_{\sigma}$ and $F_{\sigma\delta}$ ideals. In particular, we show that all $F_{\sigma}$-ideals are $\sqsubseteq$-equivalent and form the least equivalence class. There is also a least class of non-$F_{\sigma}$ Borel ideals, and there are at least two distinct classes of $F_{\sigma\delta}$ non-$F_{\sigma}$ ideals. (English)
Keyword: ideals on countable sets
Keyword: comparison game
Keyword: Tukey order
Keyword: games on integers
MSC: 03E05
MSC: 03E15
idZBL: Zbl 1240.03023
idMR: MR2849045
.
Date available: 2011-05-17T08:34:10Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141498
.
Reference: [1] Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line.A.K. Peters, Wellesley, Massachusetts, 1995. MR 1350295
Reference: [2] Farah I.: Analytic quotients: Theory of liftings for quotients over analytic ideals on integers.Mem. Amer. Math. Soc. 148 (2000), no. 702. MR 1711328
Reference: [3] Kechris A.S.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [4] Laflamme C., Leary C.C.: Filter games on $\omega$ and the dual ideal.Fund. Math. 173 (2002), 159–173. Zbl 0998.03038, MR 1924812, 10.4064/fm173-2-4
Reference: [5] Mazur K.: $F_\sigma $-ideals and $\omega_1\omega_1^*$-gaps in the Boolean algebras $P(\omega)/I$.Fund. Math. 138 (1991), no. 2, 103–111. MR 1124539
Reference: [6] Meza-Alcántara D.: Ideals and filters on countable sets.Ph.D. Thesis, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico, 2009.
Reference: [7] Solecki S.: Analytic Ideals and their Applications.Annals of Pure and Applied Logic 99 (1999), 51–72. Zbl 0932.03060, MR 1708146, 10.1016/S0168-0072(98)00051-7
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-2_3.pdf 291.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo