Previous |  Up |  Next

Article

Title: On AP spaces in concern with compact-like sets and submaximality (English)
Author: Moon, Mi Ae
Author: Cho, Myung Hyun
Author: Kim, Junhui
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 2
Year: 2011
Pages: 293-302
Summary lang: English
.
Category: math
.
Summary: The definitions of AP and WAP were originated in categorical topology by A. Pultr and A. Tozzi, Equationally closed subframes and representation of quotient spaces, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167-183. In general, we have the implications: $T_2\Rightarrow KC \Rightarrow US \Rightarrow T_1$, where $KC$ is defined as the property that every compact subset is closed and $US$ is defined as the property that every convergent sequence has at most one limit. And a space is called submaximal if every dense subset is open. In this paper, we prove that: (1) every AP $T_1$-space is $US$, (2) every nodec WAP $T_1$-space is submaximal, (3) every submaximal and collectionwise Hausdorff space is AP. We obtain that, as corollaries, (1) every countably compact (or compact or sequentially compact) AP $T_1$-space is Fréchet-Urysohn and $US$, which is a generalization of Hong's result in On spaces in which compact-like sets are closed, and related spaces, Commun. Korean Math. Soc. 22 (2007), no. 2, 297-303, (2) if a space is nodec and $T_3$, then submaximality, AP and WAP are equivalent. Finally, we prove, by giving several counterexamples, that (1) in the statement that every submaximal $T_3$-space is AP, the condition $T_3$ is necessary and (2) there is no implication between nodec and WAP. (English)
Keyword: AP
Keyword: WAP
Keyword: door
Keyword: submaximal
Keyword: nodec
Keyword: unique sequential limit
MSC: 54D10
MSC: 54D55
idZBL: Zbl 1240.54073
idMR: MR2849051
.
Date available: 2011-05-17T08:43:07Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141496
.
Reference: [1] Adams M.E., Belaid K., Dridi L., Echi O.: Submaximal and spectral spaces.Math. Proc. R. Ir. Acad. 108 (2008), no. 2, 137–147. Zbl 1171.54019, MR 2475807, 10.3318/PRIA.2008.108.2.137
Reference: [2] Arhangel'skii A.V., Collins P.J.: On submaximal spaces.Topology Appl. 64 (1995), no. 3, 219–241. MR 1342519, 10.1016/0166-8641(94)00093-I
Reference: [3] Arhangel'skii A.V., Pontryagin L.S. (eds.): General Topology I.Encyclopaedia of Mathematical Sciences, 17, Springer, Berlin, 1990. MR 1077251
Reference: [4] Bella A.: On spaces with the property of weak approximation by points.Comment. Math. Univ. Carolin. 35 (1994), no. 2, 357–360. Zbl 0808.54007, MR 1286582
Reference: [5] Bella A., Costantini C.: Minimal KC spaces are compact.Topology Appl. 155 (2008), no. 13, 1426–1429. Zbl 1145.54014, MR 2427414, 10.1016/j.topol.2008.04.005
Reference: [6] Bella A., Yaschenko I.V.: On AP and WAP spaces.Comment. Math. Univ. Carolin. 40 (1999), no. 3, 531–536. Zbl 1010.54040, MR 1732483
Reference: [7] Bezhanishvili G., Esakia L., Gabelaia D.: Some results on modal axiomatization and definability for topological spaces., Studia Logica 81 (2005), no. 3, 3250-355. Zbl 1096.03016, MR 2195500, 10.1007/s11225-005-4648-6
Reference: [8] Bourbaki N.: General Topology, Part I.Addison-Wesley Pub. Co., Hermann, Paris, 1966.
Reference: [9] Cho Myung Hyun: Discovering Modern General Topology.Kyung Moon Publishers, Seoul, 2001.
Reference: [10] Dontchev J.: On door spaces.Indian J. Pure Appl. Math. 26 (1995), no. 9, 873–881. Zbl 0835.54003, MR 1347535
Reference: [11] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), no. 2, 125–139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4
Reference: [12] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Topologies generated by discrete subspaces.Glas. Math. Ser. III 37(57) (2002), no. 1, 187–210. Zbl 1009.54005, MR 1918105
Reference: [13] Dugundji J.: Topology.Allyn and Bacon, Inc., Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [14] Franklin S.P.: Spaces in which sequences suffice II.Fund. Math. 61 (1967), 51–56. Zbl 0168.43502, MR 0222832
Reference: [15] Hong W.C.: Generalized Fréchet-Urysohn spaces.J. Korean Math. Soc. 44 (2007), no. 2, 261–273. Zbl 1143.54001, MR 2295388, 10.4134/JKMS.2007.44.2.261
Reference: [16] Hong W.C.: On spaces in which compact-like sets are closed, and related spaces.Commun. Korean Math. Soc. 22 (2007), no. 2, 297–303. Zbl 1168.54304, MR 2313452, 10.4134/CKMS.2007.22.2.297
Reference: [17] Ismail M., Nyikos P.: On spaces in which countably compact sets are closed, and hereditary properties.Topology Appl. 11 (1980), no. 3, 281–292. Zbl 0434.54018, MR 0585273, 10.1016/0166-8641(80)90027-9
Reference: [18] Kelley J.L.: General Topology.Springer, Berlin, 1955. Zbl 0518.54001, MR 0370454
Reference: [19] Pultr A., Tozzi A.: Equationally closed subframes and representation of quotient spaces.Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167–183. Zbl 0789.54008, MR 1239466
Reference: [20] Simon P.: On accumulation points.Cahiers Topologie Géom. Différentielle Catég. 35 (1994), no. 4, 321–327. Zbl 0858.54008, MR 1307264
Reference: [21] Tkachuk V.V., Yaschenko I.V.: Almost closed sets and topologies they determine.Comment. Math. Univ. Carolin. 42 (2001), no. 2, 395–405. Zbl 1053.54004, MR 1832158
Reference: [22] Whyburn G.T.: Accessibility spaces.Proc. Amer. Math. Soc. 24 (1970), no. 1, 181–185. Zbl 0197.48602, MR 0248722, 10.1090/S0002-9939-1970-0248722-0
Reference: [23] Wilansky A.: Between $T_1$ and $T_2$.Amer. Math. Monthly 74 (1967), no. 3, 261–266. MR 0208557
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-2_9.pdf 240.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo