[5] Bonetti E., Bonfanti G., Rossi R.: 
Long-time behaviour of a thermomechanical model for adhesive contact. (preprint arXiv:0909.2493), Discrete Contin. Dyn. Syst. Ser. S, in print (2010). 
MR 2746376[6] Cangémi L.: Frottement et adhérence: modèle, traitement numérique application à l'interface fibre/matrice. Ph.D. Thesis, Univ. Méditerranée, Aix Marseille I, 1997.
[9] Cocou M., Rocca R.: 
Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Model. Num. Anal. 34 (2000), 981–1001. 
DOI 10.1051/m2an:2000112 | 
MR 1837764[10] Cocou M., Schryve M., Raous M.: 
A dynamic unilateral contact problem with adhesion and friction in viscoelasticity. Z. Angew. Math. Phys. 61 (2010), 721–743. 
DOI 10.1007/s00033-009-0027-x | 
MR 2673333[11] Duvaut G., Lions J.-L.: 
Les inéquations en mécanique et en physique. Dunod, Paris, 1972. 
MR 0464857 | 
Zbl 0298.73001[12] Eck C., Jarušek J., Krbec M.: 
Unilateral Contact Problems. Variational Methods and Existence Theorems. Pure Appl. Math., 270, Chapman & Hall / CRC, Boca Raton, 2005. 
MR 2128865[13] Fernandez J.R., Shillor M., Sofonea M.: 
Analysis and numerical simulations of a dynamic contact problem with adhesion. Math. Comput. Modelling 37 (2003), 1317–1333. 
DOI 10.1016/S0895-7177(03)90043-4 | 
MR 1996040[14] Frémond M.: Adhérence des solides. J. Méc. Théor. Appl. 6 (1987), 383–407.
[15] Frémond M.: 
Equilibre des structures qui adhèrent à leur support. C.R. Acad. Sci. Paris Sér. II 295 (1982), 913–916. 
MR 0695554[16] Frémond M.: 
Non-smooth Thermomechanics. Springer, Berlin, 2002. 
MR 1885252[19] Jarušek J., Sofonea M.: 
On the solvability of dynamic elastic-visco-plastic contact problems with adhesion. Ann. Acad. Rom. Sci. Ser. Math. Appl. 1 (2009), 191–214. 
MR 2665220[24] Rocca R.: Analyse et numérique de problèmes quasi-statiques de contact avec frottement local de Coulomb en élasticité. Thesis, Univ. Aix. Marseille 1, 2005.
[25] Rojek J., Telega J.J.: Contact problems with friction, adhesion and wear in orthopeadic biomechanics I: General developements. J. Theor. Appl. Mech. 39 (2001), 655–677.
[26] Rossi R., Roubíček T.: 
Thermodynamics and analysis of rate-independent adhesive contact at small strains. preprint arXiv:1004.3764 (2010). 
MR 2793554[28] Shillor M., Sofonea M., Telega J.J.: 
Models and Variational Analysis of Quasistatic Contact. Lecture Notes in Physics, 655, Springer, Berlin, 2004. 
DOI 10.1007/b99799[29] Sofonea M., Han H., Shillor M.: 
Analysis and Approximations of Contact Problems with Adhesion or Damage. Pure and Applied Mathematics, 276, Chapman & Hall / CRC Press, Boca Raton, Florida, 2006. 
MR 2183435[30] Sofonea M., Hoarau-Mantel T.V.: 
Elastic frictionless contact problems with adhesion. Adv. Math. Sci. Appl. 15 (2005), 49–68. 
MR 2148278 | 
Zbl 1085.74036[31] Sofonea M., Matei A.: 
Variational inequalities with applications. Advances in Mathematics and Mechanics, 18, Springer, New York, 2009. 
MR 2488869 | 
Zbl 1195.49002[32] Touzaline A.: 
Frictionless contact problem with adhesion for nonlinear elastic materials. Electron. J. Differential Equations 2007, no. 174, 13 pp. 
MR 2366067 | 
Zbl 1133.35051[33] Touzaline A.: 
Frictionless contact problem with adhesion and finite penetration for elastic materials. Ann. Pol. Math. 98 (2010), no. 1, 23–38. 
DOI 10.4064/ap98-1-2 | 
MR 2607484