Previous |  Up |  Next


network character; meager convergent sequence; meager filter; meager space; function space
For a non-isolated point $x$ of a topological space $X$ let $\mathrm{nw}_\chi (x)$ be the smallest cardinality of a family $\mathcal N$ of infinite subsets of $X$ such that each neighborhood $O(x)\subset X$ of $x$ contains a set $N\in \mathcal N$. We prove that (a) each infinite compact Hausdorff space $X$ contains a non-isolated point $x$ with $\mathrm{nw}_\chi (x)=\aleph_0$; (b) for each point $x\in X$ with $\mathrm{nw}_\chi (x)=\aleph_0$ there is an injective sequence $(x_n)_{n\in \omega }$ in $X$ that $\mathcal F$-converges to $x$ for some meager filter $\mathcal F$ on $\omega $; (c) if a functionally Hausdorff space $X$ contains an $\mathcal F$-convergent injective sequence for some meager filter $\mathcal F$, then for every path-connected space $Y$ that contains two non-empty open sets with disjoint closures, the function space $C_p(X,Y)$ is meager. Also we investigate properties of filters $\mathcal F$ admitting an injective $\mathcal F$-convergent sequence in $\beta \omega $.
[1] Aviles Lopez A., Cascales S., Kadets V., Leonov A.: The Schur $l_1$ theorem for filters. Zh. Mat. Fiz. Anal. Geom. 3 (2007), no. 4, 383–398. MR 2376601
[2] Bartoszynski T., Goldstern M., Judah H., Shelah S.: All meager filters may be null. Proc. Amer. Math. Soc. 117 (1993), no. 2, 515–521. MR 1111433 | Zbl 0776.03023
[3] van Douwen E.: The integers and topology. in: Handbook of Set-Theoretic Topology (K. Kunen, J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111–167. MR 0776622 | Zbl 0561.54004
[4] Ganichev M., Kadets V.: Filter convergence in Banach spaces and generalized bases. in General Topology in Banach Spaces (T. Banakh, ed.), Nova Sci. Publ., Huntington, NY, 2001, pp. 61–69. MR 1901534 | Zbl 1035.46009
[5] García-Ferreira S., Malykhin V., A. Tamariz-Mascarúa A.: Solutions and problems on convergence structures to ultrafilters. Questions Answers Gen. Topology 13 (1995), no. 2, 103–122. MR 1350228
[6] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[7] Hart K.P.: Efimov's problem. in: Open Problems in Topology II (E. Pearl, ed.), Elsevier, Amsterdam, 2007, 171–177. MR 2367385
[8] Lašnev N.: On continuous decompositions and closed mappings of metric spaces. Dokl. Akad. Nauk SSSR 165 (1965), 756–758 (in Russian). MR 0192478
[9] Lutzer D.J., McCoy R.A.: Category in function spaces. I. Pacific J. Math. 90 (1980), no. 1, 145–168. DOI 10.2140/pjm.1980.90.145 | MR 0599327 | Zbl 0481.54017
[10] Ketonen J.: On the existence of $P$-points in the Stone-Cech compactification of integers. Fund. Math. 92 (1976), no. 2, 91–94. MR 0433387 | Zbl 0339.54035
[11] Malykhin V.I., Tironi G.: Weakly Fréchet-Urysohn and Pytkeev spaces. Topology Appl. 104 (2000), 181–190. DOI 10.1016/S0166-8641(99)00027-9 | MR 1780904 | Zbl 0952.54003
[12] Mazur K.: $F_\sigma$-ideals and $\omega_1\omega_1^*$-gaps in the Boolean algebras $P(\omega)/I$. Fund. Math. 138 (1991), no. 2, 103–111. MR 1124539
[13] Mykhaylyuk V.: On questions connected with Talagrand's problem. Mat. Stud. 29 (2008), 81–88. MR 2424602
[14] Pytkeev E.G.: The Baire property of spaces of continuous functions. Mat. Zametki 38 (1985), no. 5, 726–740. MR 0819632
[15] Pytkeev E.G.: Spaces of continuous and Baire functions in weak topologies. Doktor Sci. Dissertation, Ekaterinburg, 1993 (in Russian).
[16] Rudin M.E.: Types of ultrafilters. 1966 Topology Seminar (Wisconsin, 1965), pp. 147–151, Ann. of Math. Studies, No. 60, Princeton Univ. Press, Princeton, N.J. MR 0216451 | Zbl 0431.03033
[17] Solecki S.: Analytic ideals. Bull. Symbolic Logic 2 (1996), no. 3, 339–348. DOI 10.2307/420994 | MR 1416872 | Zbl 0932.03060
[18] Talagrand M.: Compacts de fonctions mesurables et filtres non mesurables. Studia Math. 67 (1980), no. 1, 13–43. MR 0579439 | Zbl 0435.46023
[19] Tkachuk V.: Characterization of the Baire property of $C_p(X)$ by the properties of the space $X$. Cardinal Invariants and Mappings of Topological Spaces, Izhevsk, 1984, pp. 76–77 (in Russian).
[20] Vaughan J.: Small uncountable cardinals and topology. in: Open Problems in Topology (J. van Mill, G. Reed, eds.), North-Holland, Amsterdam, 1990, pp. 195–218. MR 1078647
Partner of
EuDML logo