Previous |  Up |  Next

Article

Title: $\pi $-mappings in $ls$-Ponomarev-systems (English)
Author: Van Dung, Nguyen
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 1
Year: 2011
Pages: 35-49
Summary lang: English
.
Category: math
.
Summary: We use the $ls$-Ponomarev-system $(f, M, X, \lbrace \mathcal{P}_{\lambda ,n}\rbrace )$, where $M$ is a locally separable metric space, to give a consistent method to construct a $\pi $-mapping (compact mapping) with covering-properties from a locally separable metric space $M$ onto a space $X$. As applications of these results, we systematically get characterizations of certain $\pi $-images (compact images) of locally separable metric spaces. (English)
Keyword: sequence-covering
Keyword: compact-covering
Keyword: pseudo-sequence-covering
Keyword: sequentially-quotient
Keyword: $\pi $-mapping
Keyword: $ls$-Ponomarev-system
Keyword: double point-star cover
MSC: 54E40
MSC: 54E99
idZBL: Zbl 1240.54101
idMR: MR2813545
.
Date available: 2011-05-23T12:16:46Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141508
.
Reference: [1] An, T. V., Dung, N. V.: On $\pi $–images of locally separable metric spaces.Internat. J. Math. Math. Sci. (2008), 1–8. Zbl 1147.54318, 10.1155/2008/145683
Reference: [2] An, T. V., Dung, N. V.: On $ls$–Ponomarev systems and $s$–images of locally separable metric spaces.Lobachevskii J. Math. 29 (2008 (3)), 111–118. Zbl 1168.54013, MR 2434889, 10.1134/S1995080208030013
Reference: [3] Arhangel’skii, A. V.: Mappings and spaces.Russian Math. Surveys 21 (1966), 115–162. MR 0227950, 10.1070/RM1966v021n04ABEH004169
Reference: [4] Boone, J. R., Siwiec, F.: Sequentially quotient mappings.Czechoslovak Math. J. 26 (1976), 174–182. Zbl 0334.54003, MR 0402689
Reference: [5] Engelking, R.: General topology.PWN – Polish Scientific Publishers, Warsaw, 1977. Zbl 0373.54002, MR 0500780
Reference: [6] Ge, Y.: On compact images of locally separable metric spaces.Topology Proc. 27 (1) (2003), 351–360. Zbl 1072.54020, MR 2048944
Reference: [7] Ge, Y.: On pseudo–sequence–covering $\pi $–images of metric spaces.Mat. Vesnik 57 (2005), 113–120. MR 2194600
Reference: [8] Ge, Y.: On three equivalences concerning Ponomarev–systems.Arch. Math. (Brno) 42 (2006), 239–246. Zbl 1164.54363, MR 2260382
Reference: [9] Ikeda, Y., Liu, C., Tanaka, Y.: Quotient compact images of metric spaces, and related matters.Topology Appl. 122 (2002), 237–252. Zbl 0994.54015, MR 1919303, 10.1016/S0166-8641(01)00145-6
Reference: [10] Li, Z.: On $\pi $–$s$–images of metric spaces.nternat. J. Math. Math. Sci. 7 (2005), 1101–1107. Zbl 1082.54023, 10.1155/IJMMS.2005.1101
Reference: [11] Lin, S.: Point-countable covers and sequence-covering mappings.Chinese Science Press, Beijing, 2002. Zbl 1004.54001, MR 1939779
Reference: [12] Lin, S., Liu, C, Dai, M.: Images on locally separable metric spaces.Acta Math. Sinica (N.S.) 13 (1) (1997), 1–8. Zbl 0881.54014, MR 1465530, 10.1007/BF02560519
Reference: [13] Lin, S., Yan, P.: Notes on $cfp$-covers.Comment. Math. Univ. Carolin. 44 (2) (2003), 295–306. Zbl 1100.54021, MR 2026164
Reference: [14] Michael, E.: A note on closed maps and compact subsets.Israel J. Math. 2 (1964), 173–176. MR 0177396, 10.1007/BF02759940
Reference: [15] Michael, E.: $\aleph _0$–spaces.J. Math. Mech. 15 (1966), 983–1002. MR 0206907
Reference: [16] Ponomarev, V. I.: Axiom of countability and continuous mappings.Bull. Polish Acad. Sci. Math. 8 (1960), 127–133. MR 0116314
Reference: [17] Siwiec, F.: Sequence-covering and countably bi–quotient mappings.General Topology Appl. 1 (1971), 143–154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [18] Tanaka, Y.: Theory of $k$–networks II.Questions Answers Gen. Topology 19 (2001), 27–46. Zbl 0970.54023, MR 1815344
Reference: [19] Tanaka, Y., Ge, Y.: Around quotient compact images of metric spaces, and symmetric spaces.Houston J. Math. 32 (1) (2006), 99–117. Zbl 1102.54034, MR 2202355
Reference: [20] Yan, P.: On the compact images of metric spaces.J. Math. Study 30 (2) (1997), 185–187. MR 1468151
Reference: [21] Yan, P.: On strong sequence–covering compact mappings.Northeast. Math. J. 14 (1998), 341–344. Zbl 0927.54030, MR 1685267
.

Files

Files Size Format View
ArchMathRetro_047-2011-1_4.pdf 483.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo