Previous |  Up |  Next

Article

Title: Stratonovich-Weyl correspondence for discrete series representations (English)
Author: Cahen, Benjamin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 1
Year: 2011
Pages: 51-68
Summary lang: English
.
Category: math
.
Summary: Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak{g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak{g}$. (English)
Keyword: Stratonovich-Weyl correspondence
Keyword: Berezin quantization
Keyword: Berezin transform
Keyword: semisimple Lie group
Keyword: coadjoint orbits
Keyword: unitary representation
Keyword: Hermitian symmetric space of the noncompact type
Keyword: discrete series representation
Keyword: reproducing kernel Hilbert space
Keyword: coherent states
MSC: 22E46
MSC: 32M15
MSC: 46E22
MSC: 81S10
idZBL: Zbl 1240.22011
idMR: MR2813546
.
Date available: 2011-05-23T12:19:08Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141509
.
Reference: [1] Ali, S. T., Englis, M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (4) (2005), 391–490. Zbl 1075.81038, MR 2151954, 10.1142/S0129055X05002376
Reference: [2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284
Reference: [3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains.Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. Zbl 1150.43302, MR 1984098
Reference: [4] Arnal, D., Cahen, M., Gutt, S.: Exponential and holomorphic discrete series.Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. Zbl 0697.22010, MR 1022747
Reference: [5] Arratia, O., Del Olmo, M. A.: Moyal quantization on the cylinder.Rep. Math. Phys. 40 (1997), 149–157. Zbl 0904.58022, MR 1614685, 10.1016/S0034-4877(97)85911-3
Reference: [6] Ballesteros, A., Gadella, M., Del Olmo, M. A.: Moyal quantization of $2+1$–dimensional Galilean systems.J. Math. Phys. 33 (1992), 3379–3386. Zbl 0788.22025, MR 1182909, 10.1063/1.529939
Reference: [7] Berezin, F. A.: Quantization.Math. USSR–Izv. 8 (1974), 1109–1165, Russian. Zbl 0312.53049
Reference: [8] Berezin, F. A.: Quantization in complex symmetric domains.Math. USSR–Izv. 9 (1975), 341–379.
Reference: [9] Brif, C., Mann, A.: Phase–space formulation of quantum mechanics and quantum–state reconstruction for physical systems with Lie–group symmetries.Phys. Rev. A 59 (2) (1999), 971–987. MR 1679730, 10.1103/PhysRevA.59.971
Reference: [10] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg.Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. Zbl 1074.22005, MR 2143420
Reference: [11] Cahen, B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005
Reference: [12] Cahen, B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), 66–84. Zbl 1183.22006, MR 2549798
Reference: [13] Cahen, B.: Contraction of discrete series via Berezin quantization.J. Lie Theory 19 (2009), 291–310. Zbl 1185.22007, MR 2572131
Reference: [14] Cahen, B.: Berezin quantization for discrete series.Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458
Reference: [15] Cahen, B.: Stratonovich–Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y
Reference: [16] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds IV.Lett. Math. Phys. 34 (1995), 159–168. MR 1335583, 10.1007/BF00739094
Reference: [17] Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), 901–933. 10.1088/0305-4470/23/6/015
Reference: [18] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal–Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials.J. Funct. Anal. 204 (2003), 157–195. Zbl 1035.32014, MR 2004748, 10.1016/S0022-1236(03)00101-0
Reference: [19] Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys. 31 (1990), 2664–2671. MR 1075750, 10.1063/1.528967
Reference: [20] Folland, B.: Harmonic Analysis in Phase Space.Princeton Univ. Press, 1989. Zbl 0682.43001, MR 0983366
Reference: [21] Gracia–Bondìa, J. M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. MR 1187280
Reference: [22] Gracia–Bondìa, J. M., Vàrilly, J. C.: The Moyal representation for spin.Ann. Physics 190 (1989), 107–148. MR 0994048, 10.1016/0003-4916(89)90262-5
Reference: [23] Helgason, S.: Differential geometry, Lie groups and symmetric spaces.Grad. Stud. Math. 34 (2001). Zbl 0993.53002, MR 1834454
Reference: [24] Herb, R. A., Wolf, J. A.: Wave packets for the relative discrete series I. The holomorphic case.J. Funct. Anal. 73 (1987), 1–37. Zbl 0625.22010, MR 0890655, 10.1016/0022-1236(87)90057-7
Reference: [25] Hua, L. K.: Harmonic analysis of functions of several complex variables in the classical domains.American Mathematical Society, Providence, R.I., 1963. MR 0171936
Reference: [26] Kirillov, A. A.: Lectures on the orbit method.Grad. Stud. Math. 64 (2004). Zbl 1229.22003, MR 2069175
Reference: [27] Knapp, A. W.: Representation theory of semi–simple groups. An overview based on examples.Princeton Math. Ser. 36 (1986).
Reference: [28] Moore, C. C.: Compactifications of symmetric spaces II: The Cartan domains.Amer. J. Math. 86 (2) (1964), 358–378. MR 0161943, 10.2307/2373170
Reference: [29] Neeb, K.–H.: Holomorphy and Convexity in Lie Theory.de Gruyter Exp. Math. 28 (2000), xxii+778 pp. MR 1740617
Reference: [30] Nomura, T.: Berezin transforms and group representations.J. Lie Theory 8 (1998), 433–440. Zbl 0919.43008, MR 1650386
Reference: [31] Oliveira, M. P. De: Some formulas for the canonical Kernel function.Geom. Dedicata 86 (2001), 227–247. Zbl 0996.32011, MR 1856428, 10.1023/A:1011915708964
Reference: [32] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces.Indiana Univ. Math. J. 43 (2) (1994), 551–583. MR 1291529, 10.1512/iumj.1994.43.43023
Reference: [33] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball.Collect. Math. 43 (1992), 273–301. MR 1252736
Reference: [34] Satake, I.: Algebraic structures of symmetric domains.Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. MR 0591460
Reference: [35] Stratonovich, R. L.: On distributions in representation space.Soviet Physics JETP 4 (1957), 891–898. MR 0088173
Reference: [36] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators.Comm. Math. Phys. 164 (3) (1994), 563–597. Zbl 0843.32019, MR 1291245, 10.1007/BF02101491
Reference: [37] Varadarajan, V. S.: Lie groups, Lie algebras and their representations.Grad. Texts in Math. 102 (1984), xiii+430 pp. Zbl 0955.22500, MR 0746308
Reference: [38] Wildberger, N. J.: On the Fourier transform of a compact semisimple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl 0842.22015, MR 1250994, 10.1017/S1446788700034741
Reference: [39] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces.Manuscripta Math. 97 (1998), 371–388. Zbl 0920.22008, MR 1654800, 10.1007/s002290050109
.

Files

Files Size Format View
ArchMathRetro_047-2011-1_5.pdf 548.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo