Title:
|
An asymptotic formula for solutions of nonoscillatory half-linear differential equations (English) |
Author:
|
Došlý, Ondřej |
Author:
|
Řezníčková, Jana |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
69-75 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish a Hartman type asymptotic formula for nonoscillatory solutions of the half-linear second order differential equation
\[ \left(r(t)\Phi (y^{\prime })\right)^{\prime }+c(t)\Phi (y)=0\,,\quad \Phi (y):=|y|^{p-2}y\,,\ p>1\,. \] (English) |
Keyword:
|
half-linear differential equation |
Keyword:
|
asymptotic formula |
Keyword:
|
principal solution |
MSC:
|
34C10 |
idZBL:
|
Zbl 1240.34176 |
idMR:
|
MR2813547 |
. |
Date available:
|
2011-05-23T12:20:09Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141510 |
. |
Reference:
|
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic Publishers, Dordrecht–Boston–London, 2002. MR 2091751 |
Reference:
|
[2] Cecchi, M., Došlá, Z., Marini, M.: Half-linear equations and characteristic properties of the principal solution.J. Differential Equations 18 (2005), 1243–1256. Zbl 1069.34048, MR 2174819 |
Reference:
|
[3] Chernyavskaya, N. A., Shuster, L.: Conditions for solvability of the Hartman-Wintner problem in terms of coefficients.Proc. Edinburgh Math. Soc. (2) 46 (2003), 687–702. Zbl 1045.34028, MR 2013962 |
Reference:
|
[4] Došlá, Z., Došlý, O.: Principal and nonprincipal solutions in oscillation theory of half-linear differential equations.Electron. J. Qual. Theory Differ. Equ. 2008 (10) (2008), 1–14. |
Reference:
|
[5] Došlý, O.: Half-Linear Differential Equations.Handbook of Differential Equations: Ordinary Differential Equations (Cañada, A., Drábek, P., Fonda, A., eds.), vol. I, Elsevier, Amsterdam, 2004, pp. 161–357. Zbl 1090.34027, MR 2166491 |
Reference:
|
[6] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903 |
Reference:
|
[7] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations.Acta Math. Hungar. 120 (2008), 147–163. Zbl 1199.34169, MR 2431365, 10.1007/s10474-007-7120-4 |
Reference:
|
[8] Došlý, O., Ünal, M.: Nonprincipal solutions of half-linear second order differential equations.Nonlinear Anal. 71 (2009), 4026–4033. Zbl 1173.34320, MR 2536309, 10.1016/j.na.2009.02.085 |
Reference:
|
[9] Elbert, Á., Kusano, T.: Principal solutions of nonoscillatory half-linear differential equations.Adv. Math. Sci. Appl. 18 (1998), 745–759. |
Reference:
|
[10] Hartman, P.: Ordinary Differential Equations.SIAM, Philadelphia, 1982. Zbl 0476.34002, MR 1929104 |
Reference:
|
[11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation.Results Math. 43 (2003), 129–149. Zbl 1047.34034, MR 1962855, 10.1007/BF03322729 |
Reference:
|
[12] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions.Nonlinear Anal. 64 (2006), 762–787. Zbl 1103.34017, MR 2197094, 10.1016/j.na.2005.05.045 |
Reference:
|
[13] Mirzov, J. D.: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343 |
Reference:
|
[14] Pátíková, Z.: Asymptotic formulas for non-oscillatory solutions of perturbed half-linear Euler equation.Nonlinear Anal. 69 (2008), 3281–3290. Zbl 1158.34027, MR 2450537, 10.1016/j.na.2007.09.017 |
Reference:
|
[15] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations.Proc. Amer. Math. Soc. 97 (1986), 423–428. MR 0840623, 10.1090/S0002-9939-1986-0840623-1 |
Reference:
|
[16] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations II.Proc. Amer. Math. Soc. 131 (2003), 1415–1422. MR 1949871, 10.1090/S0002-9939-02-06682-0 |
. |