Title:
|
A note on existence theorem of Peano (English) |
Author:
|
Zubelevich, Oleg |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
83-89 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated. (English) |
Keyword:
|
Peano existence theorem |
Keyword:
|
non-Lipschitz nonlinearity |
Keyword:
|
non-uniqueness |
Keyword:
|
IVP |
Keyword:
|
ODE |
Keyword:
|
Cauchy problem |
MSC:
|
34A12 |
idZBL:
|
Zbl 1249.34023 |
idMR:
|
MR2813534 |
. |
Date available:
|
2011-06-06T14:38:13Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141557 |
. |
Reference:
|
[1] Bownds, M.: A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations.Funkcial. Ekvac. 13 (1970), 61–65. MR 0293150 |
Reference:
|
[2] Brauer, F., Sternberg, S.: Local uniqueness, existence in the large, and the convergence of successive approximations.Amer. J. Math. 80 (1958), 421–430. Zbl 0082.06801, MR 0095303, 10.2307/2372792 |
Reference:
|
[3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw–Hill Book Company, 1955. Zbl 0064.33002, MR 0069338 |
Reference:
|
[4] Engelking, R.: General Topology.PWN–Polish Scientific Publishers, Warsaw, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[5] Folland, G. B.: Real analysis. Modern techniques and their applications. Second edition.Wiley-Interscience Publication, John Wiley and Sons, 1999. MR 1681462 |
Reference:
|
[6] Godunov, A. N.: Peano’s theorem in Banach spaces.Funct. Anal. Appl. 9 (1975), 53–55. Zbl 0314.34059, 10.1007/BF01078180 |
Reference:
|
[7] Hartman, P.: Ordinary Differential Equations.New York-London-Sydney, John Wiley and Sons, 1964. Zbl 0125.32102, MR 0171038 |
Reference:
|
[8] Kamke, E.: Differentialgleichungen reeler Functionen.Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930. |
Reference:
|
[9] Kato, S.: On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces.Funkcial. Ekvac. 19 (3) (1976), 239–245. Zbl 0358.34064, MR 0435538 |
Reference:
|
[10] Krasnoselskii, M. A., Krein, S. G.: On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$.Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. MR 0079152 |
Reference:
|
[11] Levy, P.: Provessus stochastiques et mouvement Brownien.Gauthier–Villars, Paris, 1948. MR 0190953 |
Reference:
|
[12] Ramankutty, P.: Kamke’s uniqueness theorem.J. London Math. Soc. (2) 22 (1982), 110–116. MR 0579814 |
Reference:
|
[13] Schwartz, L.: Analyse mathèmatique.Herman, 1967. Zbl 0171.01301 |
Reference:
|
[14] Sobolevskii, S. L.: Systems of differential equations with nonunique solutions of the Cauchy problem.Differential Equations 38 (3) (2002), 451–452. MR 2005086, 10.1023/A:1016038732103 |
Reference:
|
[15] Szep, A.: Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces.Studia Sci. Math. Hungar. 6 (1971), 197–203. MR 0330688 |
Reference:
|
[16] Yorke, J. A.: A continuous differential equation in Hilbert space without existence.Funkcial. Ekvac. 13 (1970), 19–21. Zbl 0248.34061, MR 0264196 |
. |