| Title: | A note on existence theorem of Peano (English) | 
| Author: | Zubelevich, Oleg | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 47 | 
| Issue: | 2 | 
| Year: | 2011 | 
| Pages: | 83-89 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated. (English) | 
| Keyword: | Peano existence theorem | 
| Keyword: | non-Lipschitz nonlinearity | 
| Keyword: | non-uniqueness | 
| Keyword: | IVP | 
| Keyword: | ODE | 
| Keyword: | Cauchy problem | 
| MSC: | 34A12 | 
| idZBL: | Zbl 1249.34023 | 
| idMR: | MR2813534 | 
| . | 
| Date available: | 2011-06-06T14:38:13Z | 
| Last updated: | 2013-09-19 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/141557 | 
| . | 
| Reference: | [1] Bownds, M.: A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations.Funkcial. Ekvac. 13 (1970), 61–65. MR 0293150 | 
| Reference: | [2] Brauer, F., Sternberg, S.: Local uniqueness, existence in the large, and the convergence of successive approximations.Amer. J. Math. 80 (1958), 421–430. Zbl 0082.06801, MR 0095303, 10.2307/2372792 | 
| Reference: | [3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw–Hill Book Company, 1955. Zbl 0064.33002, MR 0069338 | 
| Reference: | [4] Engelking, R.: General Topology.PWN–Polish Scientific Publishers, Warsaw, 1977. Zbl 0373.54002, MR 0500780 | 
| Reference: | [5] Folland, G. B.: Real analysis. Modern techniques and their applications. Second edition.Wiley-Interscience Publication, John Wiley and Sons, 1999. MR 1681462 | 
| Reference: | [6] Godunov, A. N.: Peano’s theorem in Banach spaces.Funct. Anal. Appl. 9 (1975), 53–55. Zbl 0314.34059, 10.1007/BF01078180 | 
| Reference: | [7] Hartman, P.: Ordinary Differential Equations.New York-London-Sydney, John Wiley and Sons, 1964. Zbl 0125.32102, MR 0171038 | 
| Reference: | [8] Kamke, E.: Differentialgleichungen reeler Functionen.Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930. | 
| Reference: | [9] Kato, S.: On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces.Funkcial. Ekvac. 19 (3) (1976), 239–245. Zbl 0358.34064, MR 0435538 | 
| Reference: | [10] Krasnoselskii, M. A., Krein, S. G.: On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$.Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. MR 0079152 | 
| Reference: | [11] Levy, P.: Provessus stochastiques et mouvement Brownien.Gauthier–Villars, Paris, 1948. MR 0190953 | 
| Reference: | [12] Ramankutty, P.: Kamke’s uniqueness theorem.J. London Math. Soc. (2) 22 (1982), 110–116. MR 0579814 | 
| Reference: | [13] Schwartz, L.: Analyse mathèmatique.Herman, 1967. Zbl 0171.01301 | 
| Reference: | [14] Sobolevskii, S. L.: Systems of differential equations with nonunique solutions of the Cauchy problem.Differential Equations 38 (3) (2002), 451–452. MR 2005086, 10.1023/A:1016038732103 | 
| Reference: | [15] Szep, A.: Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces.Studia Sci. Math. Hungar. 6 (1971), 197–203. MR 0330688 | 
| Reference: | [16] Yorke, J. A.: A continuous differential equation in Hilbert space without existence.Funkcial. Ekvac. 13 (1970), 19–21. Zbl 0248.34061, MR 0264196 | 
| . |