Previous |  Up |  Next

Article

Title: A note on existence theorem of Peano (English)
Author: Zubelevich, Oleg
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 83-89
Summary lang: English
.
Category: math
.
Summary: An ODE with non-Lipschitz right hand side has been considered. A family of solutions with $L^p$-dependence of the initial data has been obtained. A special set of initial data has been constructed. In this set the family is continuous. The measure of this set has been estimated. (English)
Keyword: Peano existence theorem
Keyword: non-Lipschitz nonlinearity
Keyword: non-uniqueness
Keyword: IVP
Keyword: ODE
Keyword: Cauchy problem
MSC: 34A12
idZBL: Zbl 1249.34023
idMR: MR2813534
.
Date available: 2011-06-06T14:38:13Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141557
.
Reference: [1] Bownds, M.: A uniqueness theorem for non-Lipschitzian systems of ordinary differential equations.Funkcial. Ekvac. 13 (1970), 61–65. MR 0293150
Reference: [2] Brauer, F., Sternberg, S.: Local uniqueness, existence in the large, and the convergence of successive approximations.Amer. J. Math. 80 (1958), 421–430. Zbl 0082.06801, MR 0095303, 10.2307/2372792
Reference: [3] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw–Hill Book Company, 1955. Zbl 0064.33002, MR 0069338
Reference: [4] Engelking, R.: General Topology.PWN–Polish Scientific Publishers, Warsaw, 1977. Zbl 0373.54002, MR 0500780
Reference: [5] Folland, G. B.: Real analysis. Modern techniques and their applications. Second edition.Wiley-Interscience Publication, John Wiley and Sons, 1999. MR 1681462
Reference: [6] Godunov, A. N.: Peano’s theorem in Banach spaces.Funct. Anal. Appl. 9 (1975), 53–55. Zbl 0314.34059, 10.1007/BF01078180
Reference: [7] Hartman, P.: Ordinary Differential Equations.New York-London-Sydney, John Wiley and Sons, 1964. Zbl 0125.32102, MR 0171038
Reference: [8] Kamke, E.: Differentialgleichungen reeler Functionen.Akademische Verlagsgesellschaft, Geest and Portig K.–G., 1930.
Reference: [9] Kato, S.: On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces.Funkcial. Ekvac. 19 (3) (1976), 239–245. Zbl 0358.34064, MR 0435538
Reference: [10] Krasnoselskii, M. A., Krein, S. G.: On a class of uniqueness theorems for the equations $y^{\prime }=f(x,y)$.Uspekhi Mat. Nauk (N.S.) 11 no. 1 (67) (1956), 209–213. MR 0079152
Reference: [11] Levy, P.: Provessus stochastiques et mouvement Brownien.Gauthier–Villars, Paris, 1948. MR 0190953
Reference: [12] Ramankutty, P.: Kamke’s uniqueness theorem.J. London Math. Soc. (2) 22 (1982), 110–116. MR 0579814
Reference: [13] Schwartz, L.: Analyse mathèmatique.Herman, 1967. Zbl 0171.01301
Reference: [14] Sobolevskii, S. L.: Systems of differential equations with nonunique solutions of the Cauchy problem.Differential Equations 38 (3) (2002), 451–452. MR 2005086, 10.1023/A:1016038732103
Reference: [15] Szep, A.: Existence theorem for weak solutions for ordinary differential equations in reflexive Banach spaces.Studia Sci. Math. Hungar. 6 (1971), 197–203. MR 0330688
Reference: [16] Yorke, J. A.: A continuous differential equation in Hilbert space without existence.Funkcial. Ekvac. 13 (1970), 19–21. Zbl 0248.34061, MR 0264196
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_2.pdf 436.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo