Previous |  Up |  Next

Article

Title: Finite groups with a unique nonlinear nonfaithful irreducible character (English)
Author: Iranmanesh, Ali
Author: Saeidi, Amin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 91-98
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider finite groups with precisely one nonlinear nonfaithful irreducible character. We show that the groups of order 16 with nilpotency class 3 are the only $p$-groups with this property. Moreover we completely characterize the nilpotent groups with this property. Also we show that if $G$ is a group with a nontrivial center which possesses precisely one nonlinear nonfaithful irreducible character then $G$ is solvable. (English)
Keyword: minimal normal subgroups
Keyword: faithful characters
Keyword: strong condition on normal subgroups
Keyword: Frobenius groups
MSC: 20C15
MSC: 20D15
MSC: 20F16
idZBL: Zbl 1249.20009
idMR: MR2813535
.
Date available: 2011-06-06T14:38:56Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141558
.
Reference: [1] Berkovich, Y., Chillag, D., Herzog, M.: Finite groups in which the degrees of the nonlinear irreducible characters are distinct.Proc. Amer. Math. Soc. 115 (1992), 955–958. Zbl 0822.20004, MR 1088438, 10.1090/S0002-9939-1992-1088438-9
Reference: [2] Di Martino, L., Tamburini, M. C.: Some remarks on the degrees of faithful irreducible representation of a finite group.Geom. Dedicata 41 (1992), 155–164. MR 1153979
Reference: [3] Fernández–Alcober, G. A., Moretó, A.: Groups with extreme character degrees and their normal subgroups.Trans. Amer. Math. Soc. 353 (2001), 2271–2292. 10.1090/S0002-9947-01-02685-X
Reference: [4] Gagola, S. M.: A character theoretic condition for F(G)$>$1.Comm. Algebra 133 (2005), 1369–1382. Zbl 1098.20005, MR 2149064, 10.1081/AGB-200058414
Reference: [5] : GAP Groups, Algorithms, and Programming, Version 4.4.10, 2007.
Reference: [6] Isaacs, I. M.: Character Theory of Finite Groups.Dover, New York, 1994. Zbl 0849.20004, MR 1280461
Reference: [7] Loukaki, M.: On distinct character degrees.Israel J. Math. 159 (2007), 93–97. Zbl 1131.20006, MR 2342474, 10.1007/s11856-007-0039-1
Reference: [8] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one.Proc. Amer. Math. Soc. 19 (1968), 459–461. Zbl 0244.20010, MR 0222160, 10.1090/S0002-9939-1968-0222160-X
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_3.pdf 410.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo