Previous |  Up |  Next

Article

Keywords:
quadratic mapping; fixed point; quadratic functional equation; generalized Hyers-Ulam stability
Summary:
Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies \begin{eqnarray} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end{eqnarray} for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method.
References:
[1] Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4 (1) (2003), 7 pp, Art. ID 4. MR 1965984 | Zbl 1043.39010
[2] Cholewa, P. W.: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76–86. DOI 10.1007/BF02192660 | MR 0758860 | Zbl 0549.39006
[3] Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. DOI 10.1007/BF02941618 | MR 1182841 | Zbl 0779.39003
[4] Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 74 (1968), 305–309. DOI 10.1090/S0002-9904-1968-11933-0 | MR 0220267 | Zbl 0157.29904
[5] Fauiziev, V., Sahoo, K. P.: On the stability of Jensen’s functional equation on groups. Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 31–48. DOI 10.1007/s12044-007-0003-3 | MR 2300676
[6] Găvruta, P., Găvruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability. Int. J. Nonlinear Anal. Appl. 1 (2) (2010), 11–18.
[7] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. DOI 10.1073/pnas.27.4.222 | MR 0004076 | Zbl 0061.26403
[8] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables. Birkhäser, Basel, 1998. MR 1639801 | Zbl 0907.39025
[9] Isac, G., Rassias, Th. M.: Stability of $\psi $–additive mappings: Applications to nonlinear analysis. Internat. J. Math. Math. Sci. 19 (1996), 219–228. DOI 10.1155/S0161171296000324 | MR 1375983 | Zbl 0843.47036
[10] Jun, K., Kim, H.: On the stability of an $n$–dimensional quadratic and additive functional equation. Math. Inequal. Appl. 9 (2006), 153–165. MR 2198559 | Zbl 1093.39026
[11] Jung, S., Lee, Z.: A fixed point approach to the stability of quadratic functional equation with involution. Fixed Point Theory and Applications (2008), Article ID 732086 (2008). MR 2415405 | Zbl 1149.39022
[12] Khodaei, H., Rassias, Th. M.: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 1 (1) (2010), 22–41.
[13] Mirzavaziri, M., Moslehian, M. S.: A fixed point approch to stability of quadratic equation. Bull. Brazil. Math. Soc. 37 (2006), 361–376. DOI 10.1007/s00574-006-0016-z | MR 2267783
[14] Park, C., Rassias, Th. M.: Fixed points and generalized Hyers–Ulam stability of quadratic functional equations. J. Math. Inequal. 37 (2006), 515–528. MR 2408405
[15] Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4 (2003), 91–96. MR 2031824 | Zbl 1051.39031
[16] Rassias, Th. M.: On the stability of the quadratic functional equation and its applications. Studia Univ. Babeş–Bolyai Math. XLIII (1998), 89–124. MR 1854544 | Zbl 1009.39025
[17] Rassias, Th. M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62 (1) (2000), 23–130. DOI 10.1023/A:1006499223572 | MR 1778016 | Zbl 0981.39014
[18] Skof, F.: Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. DOI 10.1007/BF02924890
[19] Ulam, S. M.: Problems in Modern Mathematics. Wiley, New York, 1960. MR 0280310
Partner of
EuDML logo