[1] Cădariu, L., Radu, V.:
Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4 (1) (2003), 7 pp, Art. ID 4.
MR 1965984 |
Zbl 1043.39010
[6] Găvruta, P., Găvruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability. Int. J. Nonlinear Anal. Appl. 1 (2) (2010), 11–18.
[8] Hyers, D. H., Isac, G., Rassias, Th. M.:
Stability of Functional Equations in Several Variables. Birkhäser, Basel, 1998.
MR 1639801 |
Zbl 0907.39025
[10] Jun, K., Kim, H.:
On the stability of an $n$–dimensional quadratic and additive functional equation. Math. Inequal. Appl. 9 (2006), 153–165.
MR 2198559 |
Zbl 1093.39026
[11] Jung, S., Lee, Z.:
A fixed point approach to the stability of quadratic functional equation with involution. Fixed Point Theory and Applications (2008), Article ID 732086 (2008).
MR 2415405 |
Zbl 1149.39022
[12] Khodaei, H., Rassias, Th. M.: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 1 (1) (2010), 22–41.
[14] Park, C., Rassias, Th. M.:
Fixed points and generalized Hyers–Ulam stability of quadratic functional equations. J. Math. Inequal. 37 (2006), 515–528.
MR 2408405
[15] Radu, V.:
The fixed point alternative and the stability of functional equations. Fixed Point Theory 4 (2003), 91–96.
MR 2031824 |
Zbl 1051.39031
[16] Rassias, Th. M.:
On the stability of the quadratic functional equation and its applications. Studia Univ. Babeş–Bolyai Math. XLIII (1998), 89–124.
MR 1854544 |
Zbl 1009.39025
[18] Skof, F.:
Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
DOI 10.1007/BF02924890
[19] Ulam, S. M.:
Problems in Modern Mathematics. Wiley, New York, 1960.
MR 0280310