Previous |  Up |  Next

Article

Title: Nonlinear stability of a quadratic functional equation with complex involution (English)
Author: Saadati, Reza
Author: Sadeghi, Ghadir
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 111-117
Summary lang: English
.
Category: math
.
Summary: Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies \begin{eqnarray} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end{eqnarray} for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method. (English)
Keyword: quadratic mapping
Keyword: fixed point
Keyword: quadratic functional equation
Keyword: generalized Hyers-Ulam stability
MSC: 39B72
MSC: 47H10
idZBL: Zbl 1249.39031
idMR: MR2813537
.
Date available: 2011-06-06T14:41:10Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141560
.
Reference: [1] Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation.J. Inequal. Pure Appl. Math. 4 (1) (2003), 7 pp, Art. ID 4. Zbl 1043.39010, MR 1965984
Reference: [2] Cholewa, P. W.: Remarks on the stability of functional equations.Aequationes Math. 27 (1984), 76–86. Zbl 0549.39006, MR 0758860, 10.1007/BF02192660
Reference: [3] Czerwik, S.: On the stability of the quadratic mapping in normed spaces.Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. Zbl 0779.39003, MR 1182841, 10.1007/BF02941618
Reference: [4] Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space.Bull. Amer. Math. Soc. 74 (1968), 305–309. Zbl 0157.29904, MR 0220267, 10.1090/S0002-9904-1968-11933-0
Reference: [5] Fauiziev, V., Sahoo, K. P.: On the stability of Jensen’s functional equation on groups.Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 31–48. MR 2300676, 10.1007/s12044-007-0003-3
Reference: [6] Găvruta, P., Găvruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability.Int. J. Nonlinear Anal. Appl. 1 (2) (2010), 11–18.
Reference: [7] Hyers, D. H.: On the stability of the linear functional equation.Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. Zbl 0061.26403, MR 0004076, 10.1073/pnas.27.4.222
Reference: [8] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables.Birkhäser, Basel, 1998. Zbl 0907.39025, MR 1639801
Reference: [9] Isac, G., Rassias, Th. M.: Stability of $\psi $–additive mappings: Applications to nonlinear analysis.Internat. J. Math. Math. Sci. 19 (1996), 219–228. Zbl 0843.47036, MR 1375983, 10.1155/S0161171296000324
Reference: [10] Jun, K., Kim, H.: On the stability of an $n$–dimensional quadratic and additive functional equation.Math. Inequal. Appl. 9 (2006), 153–165. Zbl 1093.39026, MR 2198559
Reference: [11] Jung, S., Lee, Z.: A fixed point approach to the stability of quadratic functional equation with involution.Fixed Point Theory and Applications (2008), Article ID 732086 (2008). Zbl 1149.39022, MR 2415405
Reference: [12] Khodaei, H., Rassias, Th. M.: Approximately generalized additive functions in several variables.Int. J. Nonlinear Anal. Appl. 1 (1) (2010), 22–41.
Reference: [13] Mirzavaziri, M., Moslehian, M. S.: A fixed point approch to stability of quadratic equation.Bull. Brazil. Math. Soc. 37 (2006), 361–376. MR 2267783, 10.1007/s00574-006-0016-z
Reference: [14] Park, C., Rassias, Th. M.: Fixed points and generalized Hyers–Ulam stability of quadratic functional equations.J. Math. Inequal. 37 (2006), 515–528. MR 2408405
Reference: [15] Radu, V.: The fixed point alternative and the stability of functional equations.Fixed Point Theory 4 (2003), 91–96. Zbl 1051.39031, MR 2031824
Reference: [16] Rassias, Th. M.: On the stability of the quadratic functional equation and its applications.Studia Univ. Babeş–Bolyai Math. XLIII (1998), 89–124. Zbl 1009.39025, MR 1854544
Reference: [17] Rassias, Th. M.: On the stability of functional equations and a problem of Ulam.Acta Appl. Math. 62 (1) (2000), 23–130. Zbl 0981.39014, MR 1778016, 10.1023/A:1006499223572
Reference: [18] Skof, F.: Proprietà locali e approssimazione di operatori.Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. 10.1007/BF02924890
Reference: [19] Ulam, S. M.: Problems in Modern Mathematics.Wiley, New York, 1960. MR 0280310
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_5.pdf 428.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo