Title:
|
Nonlinear stability of a quadratic functional equation with complex involution (English) |
Author:
|
Saadati, Reza |
Author:
|
Sadeghi, Ghadir |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
47 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
111-117 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X, Y$ be complex vector spaces. Recently, Park and Th.M. Rassias showed that if a mapping $f : X \rightarrow Y$ satisfies
\begin{eqnarray} f(x+i y)+ f(x-iy) = 2 f(x) - 2f(y) \end{eqnarray}
for all $x$, $y\in X$, then the mapping $f \colon X \rightarrow Y$ satisfies $f(x+y) + f(x-y) = 2 f(x) + 2 f(y)$ for all $x$, $y \in X$. Furthermore, they proved the generalized Hyers-Ulam stability of the functional equation () in complex Banach spaces. In this paper, we will adopt the idea of Park and Th. M. Rassias to prove the stability of a quadratic functional equation with complex involution via fixed point method. (English) |
Keyword:
|
quadratic mapping |
Keyword:
|
fixed point |
Keyword:
|
quadratic functional equation |
Keyword:
|
generalized Hyers-Ulam stability |
MSC:
|
39B72 |
MSC:
|
47H10 |
idZBL:
|
Zbl 1249.39031 |
idMR:
|
MR2813537 |
. |
Date available:
|
2011-06-06T14:41:10Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141560 |
. |
Reference:
|
[1] Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation.J. Inequal. Pure Appl. Math. 4 (1) (2003), 7 pp, Art. ID 4. Zbl 1043.39010, MR 1965984 |
Reference:
|
[2] Cholewa, P. W.: Remarks on the stability of functional equations.Aequationes Math. 27 (1984), 76–86. Zbl 0549.39006, MR 0758860, 10.1007/BF02192660 |
Reference:
|
[3] Czerwik, S.: On the stability of the quadratic mapping in normed spaces.Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. Zbl 0779.39003, MR 1182841, 10.1007/BF02941618 |
Reference:
|
[4] Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space.Bull. Amer. Math. Soc. 74 (1968), 305–309. Zbl 0157.29904, MR 0220267, 10.1090/S0002-9904-1968-11933-0 |
Reference:
|
[5] Fauiziev, V., Sahoo, K. P.: On the stability of Jensen’s functional equation on groups.Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 31–48. MR 2300676, 10.1007/s12044-007-0003-3 |
Reference:
|
[6] Găvruta, P., Găvruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability.Int. J. Nonlinear Anal. Appl. 1 (2) (2010), 11–18. |
Reference:
|
[7] Hyers, D. H.: On the stability of the linear functional equation.Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. Zbl 0061.26403, MR 0004076, 10.1073/pnas.27.4.222 |
Reference:
|
[8] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables.Birkhäser, Basel, 1998. Zbl 0907.39025, MR 1639801 |
Reference:
|
[9] Isac, G., Rassias, Th. M.: Stability of $\psi $–additive mappings: Applications to nonlinear analysis.Internat. J. Math. Math. Sci. 19 (1996), 219–228. Zbl 0843.47036, MR 1375983, 10.1155/S0161171296000324 |
Reference:
|
[10] Jun, K., Kim, H.: On the stability of an $n$–dimensional quadratic and additive functional equation.Math. Inequal. Appl. 9 (2006), 153–165. Zbl 1093.39026, MR 2198559 |
Reference:
|
[11] Jung, S., Lee, Z.: A fixed point approach to the stability of quadratic functional equation with involution.Fixed Point Theory and Applications (2008), Article ID 732086 (2008). Zbl 1149.39022, MR 2415405 |
Reference:
|
[12] Khodaei, H., Rassias, Th. M.: Approximately generalized additive functions in several variables.Int. J. Nonlinear Anal. Appl. 1 (1) (2010), 22–41. |
Reference:
|
[13] Mirzavaziri, M., Moslehian, M. S.: A fixed point approch to stability of quadratic equation.Bull. Brazil. Math. Soc. 37 (2006), 361–376. MR 2267783, 10.1007/s00574-006-0016-z |
Reference:
|
[14] Park, C., Rassias, Th. M.: Fixed points and generalized Hyers–Ulam stability of quadratic functional equations.J. Math. Inequal. 37 (2006), 515–528. MR 2408405 |
Reference:
|
[15] Radu, V.: The fixed point alternative and the stability of functional equations.Fixed Point Theory 4 (2003), 91–96. Zbl 1051.39031, MR 2031824 |
Reference:
|
[16] Rassias, Th. M.: On the stability of the quadratic functional equation and its applications.Studia Univ. Babeş–Bolyai Math. XLIII (1998), 89–124. Zbl 1009.39025, MR 1854544 |
Reference:
|
[17] Rassias, Th. M.: On the stability of functional equations and a problem of Ulam.Acta Appl. Math. 62 (1) (2000), 23–130. Zbl 0981.39014, MR 1778016, 10.1023/A:1006499223572 |
Reference:
|
[18] Skof, F.: Proprietà locali e approssimazione di operatori.Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. 10.1007/BF02924890 |
Reference:
|
[19] Ulam, S. M.: Problems in Modern Mathematics.Wiley, New York, 1960. MR 0280310 |
. |