Previous |  Up |  Next

Article

Title: A new characterization of $r$-stable hypersurfaces in space forms (English)
Author: de Lima, H. F.
Author: Velásquez, M. A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 119-131
Summary lang: English
.
Category: math
.
Summary: In this paper we study the $r$-stability of closed hypersurfaces with constant $r$-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the $r$-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the $r$-th mean curvature. (English)
Keyword: space forms
Keyword: $r$-th mean curvatures
Keyword: $r$-stability
MSC: 53B30
MSC: 53C42
MSC: 53C50
MSC: 53Z05
MSC: 83C99
idZBL: Zbl 1249.53081
idMR: MR2813538
.
Date available: 2011-06-06T14:42:04Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141561
.
Reference: [1] Alencar, H., do Carmo, M., Colares, A. G.: Stable hypersurfaces with constant scalar curvature.Math. Z. 213 (1993), 117–131. Zbl 0792.53057, MR 1217674, 10.1007/BF03025712
Reference: [2] Barbosa, J. L. M., Colares, A. G.: Stability of hypersurfaces with constant $r$-mean curvature.Ann. Global Anal. Geom. 15 (1997), 277–297. Zbl 0891.53044, MR 1456513, 10.1023/A:1006514303828
Reference: [3] Barbosa, J. L. M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature.Math. Z. 185 (3) (1984), 339–353. Zbl 0513.53002, MR 0731682, 10.1007/BF01215045
Reference: [4] Barbosa, J. L. M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds.Math. Z. 197 (1) (1988), 123–138. Zbl 0653.53045, MR 0917854, 10.1007/BF01161634
Reference: [5] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature.Proc. Amer. Math. Soc. 137 (2009), 3105–3114. Zbl 1189.53058, MR 2506469, 10.1090/S0002-9939-09-09862-1
Reference: [6] Caminha, A.: On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds.J. Geom. Phys. 56 (2006), 1144–1174. Zbl 1102.53044, MR 2234043, 10.1016/j.geomphys.2005.06.007
Reference: [7] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237
Reference: [8] de Lima, H. F.: Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space.J. Geom. Phys. 57 (2007), 967–975. Zbl 1111.53049, MR 2275203, 10.1016/j.geomphys.2006.07.005
Reference: [9] He, Y., Li, H.: Stability of area-preserving variations in space forms.Ann. Global Anal. Geom. 34 (2008), 55–68. Zbl 1156.53037, MR 2415178, 10.1007/s10455-007-9095-3
Reference: [10] Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms.J. Differential Equations 8 (1973), 465–477. Zbl 0277.53030, MR 0341351
Reference: [11] Rosenberg, H.: Hypersurfaces of constant curvature in space forms.Bull. Sci. Math. 117 (1993), 217–239. Zbl 0787.53046, MR 1216008
Reference: [12] Xin, Y.: Minimal submanifolds and related topics.World Scientific Publishing co., Singapore, 2003. Zbl 1055.53047, MR 2035469
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_6.pdf 498.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo