Previous |  Up |  Next

Article

Title: A remark on the Morita theorem for operads (English)
Author: Stanculescu, Alexandru E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 139-150
Summary lang: English
.
Category: math
.
Summary: We extend a result of M. M. Kapranov and Y. Manin concerning the Morita theory for linear operads. We also give a cyclic operad version of their result. (English)
Keyword: operads
Keyword: Morita theorems
MSC: 18D50
idZBL: Zbl 1249.18003
idMR: MR2813540
.
Date available: 2011-06-06T14:43:25Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141563
.
Reference: [1] Fresse, B.: Lie theory of formal groups over an operad.J. Algebra 202 (2) (1998), 455–511. Zbl 1041.18009, MR 1617616, 10.1006/jabr.1997.7280
Reference: [2] Kapranov, M. M., Manin, Y.: Modules and Morita theorem for operads.Amer. J. Math. 123 (5) (2001), 811–838. Zbl 1001.18004, MR 1854112, 10.1353/ajm.2001.0033
Reference: [3] Kelly, G. M.: On the operads of J. P. May.Represent. Theory Appl. Categ. (13) (2005), 1–13, electronic. Zbl 1082.18009, MR 2177746
Reference: [4] Lam, T. Y.: Lectures on modules and rings.Graduate Texts in Mathematics ed., no. 189, Springer–Verlag, New York, 1999. Zbl 0911.16001, MR 1653294
Reference: [5] Markl, M.: Operads and PROPs.Handbook of algebra ed., vol. 5, Elsevier, North–Holland, Amsterdam, 2008. Zbl 1211.18007, MR 2523450
Reference: [6] Pareigis, B.: Non–additive ring and module theory. I. General theory of monoids.Publ. Math. Debrecen 24 (1–2) (1977), 189–204. Zbl 0377.16021, MR 0450361
Reference: [7] Pareigis, B.: Non-additive ring and module theory. II. $C$–categories, $C$–functors and $C$–morphisms.Publ. Math. Debrecen 24 (3–4) (1977), 351–361. MR 0498792
Reference: [8] Pareigis, B.: Non-additive ring and module theory. III. Morita equivalences.Publ. Math. Debrecen 25 (1–2) (1978), 177–186. Zbl 0377.16023, MR 0498793
Reference: [9] Rezk, C.: Spaces of algebra structures and cohomology of operads.Ph.D. thesis, MIT, 1996. MR 2716655
Reference: [10] Vitale, E. M.: Monoidal categories for Morita theory.Cahiers Topologie Géom. Différentielle Catég. 33 (1992), 331–343. Zbl 0850.18005, MR 1197429
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_8.pdf 508.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo