Previous |  Up |  Next

Article

Title: On complete spacelike hypersurfaces with $R=aH+b$ in locally symmetric Lorentz spaces (English)
Author: Han, Yingbo
Author: Feng, Shuxiang
Author: Yu, Liju
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 2
Year: 2011
Pages: 151-161
Summary lang: English
.
Category: math
.
Summary: In this note, we investigate $n$-dimensional spacelike hypersurfaces $M^n$ with $R=aH+b$ in locally symmetric Lorentz space. Two rigidity theorems are obtained for these spacelike hypersurfaces. (English)
Keyword: spacelike submanifolds
Keyword: locally symmetric Lorentz spaces
MSC: 53B30
MSC: 53C42
idZBL: Zbl 1249.53077
idMR: MR2813541
.
Date available: 2011-06-06T14:44:28Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141564
.
Reference: [1] Alencar, H., do Carmo, M.: Hypersurfacs with constant mean curvature in spheres.Proc. Amer. Math. Soc. 120 (1994), 1223–1229. MR 1172943, 10.1090/S0002-9939-1994-1172943-2
Reference: [2] Baek, J. Ok, Cheng, Q. M., Suh, Y.Jin: Complete spacelike hypersurfaces in Locally symmetric Lorentz spaces.J. Geom. Phys. 49 (2004), 231–247. MR 2077302, 10.1016/S0393-0440(03)00090-1
Reference: [3] Camargo, F. E. C., Chaves, R. M. B., Sousa, Jr., L. A. M.: Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in de Sitter space.Differential Geom. Appl. 26 (2008), 592–599. Zbl 1160.53361, MR 2474421, 10.1016/j.difgeo.2008.04.020
Reference: [4] Cheng, Q. M., Ishikawa, S.: Space-like hypersurfaces with constant scalar curvature.Manuscripta Math. 95 (1998), 499–505. MR 1618206
Reference: [5] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237
Reference: [6] Choi, S. M., Lyu, S. M., Suh, Y. J.: Complete spacelike hypersurfaces in a Lorentz manifolds.Math. J. Toyama Univ. 22 (1999), 499–505.
Reference: [7] Goddard, A. J.: Some remarks on the existence of space-like hypersurfaces of constant mean curvature.Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. MR 0458344, 10.1017/S0305004100054153
Reference: [8] Liu, J. C., Sun, Z. Y.: On spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces.J. Math. Anal. Appl. 364 (1) (2010), 195–203. Zbl 1188.53069, MR 2576063, 10.1016/j.jmaa.2009.10.029
Reference: [9] Liu, X. M.: Complete space-like hypersurfaces with constant scalar curvature.Manuscripta Math. 105 (2001), 367–377. Zbl 1002.53043, MR 1856617, 10.1007/s002290100187
Reference: [10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J. Math. 96 (1974), 207–213. Zbl 0302.53028, MR 0353216, 10.2307/2373587
Reference: [11] Omori, H.: Isometric immersions of Riemmanian manifolds.J. Math. Soc. Japan 19 (1967), 205–214. MR 0215259, 10.2969/jmsj/01920205
Reference: [12] Suh, Y. J., Choi, Y. S., Yang, H. Y.: On spacelike hypersurfaces with constant mean curvature in a Lorentz manifold.Houston J. Math. 28 (2002), 47–70. MR 1876939
Reference: [13] Zhang, S. C., Wu, B. Q.: Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz space.J. Geom. Phys. 60 (2010), 333–340. MR 2587397, 10.1016/j.geomphys.2009.10.005
Reference: [14] Zheng, Y.: On spacelike hypersurfaces in the de Sitter spaces.Ann. Global Anal. Geom. 13 (1995), 317–321. 10.1007/BF00773403
Reference: [15] Zheng, Y.: Space-like hypersurfaces with constant scalar curvature in de Sitter space.Differential Geom. Appl. 6 (1996), 51–54. MR 1384878, 10.1016/0926-2245(96)00006-X
.

Files

Files Size Format View
ArchMathRetro_047-2011-2_9.pdf 489.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo