Previous |  Up |  Next

Article

Title: Exponential smoothing for time series with outliers (English)
Author: Hanzák, Tomáš
Author: Cipra, Tomáš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 2
Year: 2011
Pages: 165-178
Summary lang: English
.
Category: math
.
Summary: Recursive time series methods are very popular due to their numerical simplicity. Their theoretical background is usually based on Kalman filtering in state space models (mostly in dynamic linear systems). However, in time series practice one must face frequently to outlying values (outliers), which require applying special methods of robust statistics. In the paper a simple robustification of Kalman filter is suggested using a simple truncation of the recursive residuals. Then this concept is applied mainly to various types of exponential smoothing (recursive estimation in Box-Jenkins models with outliers is also mentioned). The methods are demonstrated using simulated data. (English)
Keyword: exponential smoothing
Keyword: Kalman filter
Keyword: outliers
Keyword: robust smoothing and forecasting
MSC: 60G35
MSC: 62M10
MSC: 62M20
MSC: 90A20
idZBL: Zbl 1220.62114
idMR: MR2828571
.
Date available: 2011-06-06T14:51:48Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141565
.
Reference: [1] Abraham, B., Ledolter, J.: Statistical Methods for Forecasting.Wiley, New York 1983. Zbl 0587.62175, MR 0719535
Reference: [2] Anděl, J., Zichová, J.: A method for estimating parameter in nonnegative MA(1) models.Comm. Statist. Theory Methods 31 (2002), 2101–2111. Zbl 1051.62070, MR 1946313, 10.1081/STA-120015019
Reference: [3] Cipra, T.: Some problems of exponential smoothing.Appl. Math. 34 (1989), 161–169. Zbl 0673.62079, MR 0990303
Reference: [4] Cipra, T.: Robust exponential smoothing.J. Forecasting 11 (1992), 57–69. 10.1002/for.3980110106
Reference: [5] Cipra, T., Romera, R.: Robust Kalman filter and its applications in time series analysis.Kybernetika 27 (1991), 481–494. MR 1150938
Reference: [6] Cipra, T., Trujillo, J., Rubio, A.: Holt-Winters method with missing observations.Management Sci. 41 (1995), 174–178. Zbl 0829.90034, 10.1287/mnsc.41.1.174
Reference: [7] Croux, C., Gelper, S., Fried, R.: Computational aspects of robust Holt-Winters smoothing based on M-estimation.Appl. Math. 53 (2008), 163–176. Zbl 1199.91156, MR 2411122, 10.1007/s10492-008-0002-4
Reference: [8] Gardner, E. S.: Exponential smoothing: The state of the art.J. Forecasting 4 (1985), 1–28.
Reference: [9] Gardner, E. S.: Exponential smoothing: The state of the art - Part II.Internat. J. Forecasting 22 (2006), 637–666. 10.1016/j.ijforecast.2006.03.005
Reference: [10] Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing.J. Forecasting 29 (2010), 285–300. Zbl 1203.62164, MR 2752114
Reference: [11] Taylor, J. W.: Smooth transition exponential smoothing.J. Forecasting 23 (2004), 385–404. 10.1002/for.918
Reference: [12] Yohai, V., Zamar, R.: High break down point estimates of regression by means of the minimization of an efficient scale.J. Amer. Statist. Assoc. 83 (1988), 406–413. MR 0971366, 10.1080/01621459.1988.10478611
.

Files

Files Size Format View
Kybernetika_47-2011-2_1.pdf 285.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo