Previous |  Up |  Next

Article

Title: Consistency of the least weighted squares under heteroscedasticity (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 2
Year: 2011
Pages: 179-206
Summary lang: English
.
Category: math
.
Summary: A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved. (English)
Keyword: robustness
Keyword: weighting the order statistics of the squared residuals
Keyword: consistency of the least weighted squares under heteroscedasticity
MSC: 62F35
MSC: 62J02
idZBL: Zbl 1220.62064
idMR: MR2828572
.
Date available: 2011-06-06T14:53:14Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141567
.
Reference: [1] Bickel, P. J.: One-step Huber estimates in the linear model.J. Amer. Statist. Assoc. 70 (1975), 428–433. Zbl 0322.62038, MR 0386168, 10.1080/01621459.1975.10479884
Reference: [2] Breiman, L.: Probability.Addison-Wesley Publishing Company, London 1968. Zbl 0174.48801, MR 0229267
Reference: [3] Croux, C., Rousseeuw, P. J.: A class of high-breakdown scale estimators based on subranges.Commun. Statist. Theory Methods 21 (1992), 1935–1951. Zbl 0774.62035, MR 1173503, 10.1080/03610929208830889
Reference: [4] Hájek, J., Šidák, Z.: Theory of Rank Test.Academic Press, New York 1967. MR 0229351
Reference: [5] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics – The Approach Based on Influence Functions.Wiley, New York 1986. Zbl 0593.62027, MR 0829458
Reference: [6] Hettmansperger, T. P., Sheather, S. J.: A cautionary note on the method of Least Median Squares.Amer. Statist. 46 (1992), 79–83. MR 1165565
Reference: [7] Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., Lee, T. C.: The Theory and Practice of Econometrics.Second edition. Wiley, New York 1985. MR 1007139
Reference: [8] Jurečková, J., Sen, P. K.: Regression rank scores scale statistics and studentization in linear models.In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag 1993,  111–121. MR 1311932
Reference: [9] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models.Lecture Notes in Statist. 166, Springer Verlag, New York 2002. Zbl 1007.62047, MR 1911855
Reference: [10] Mašíček, J.: Consistency of the least weighted squares estimator.In: Statistics for Industry and Technology, Birkha̋ser Verlag Basel 2004 ,  183–194.
Reference: [11] Rousseeuw, P. J.: Least median of square regression.J. Amer. Statist. Assoc. 79 (1984), 871–880. MR 0770281, 10.1080/01621459.1984.10477105
Reference: [12] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection.Wiley, New York 1987. Zbl 0711.62030, MR 0914792
Reference: [13] Štepán, J.: Teorie pravděpodobnosti.Academia, Praha 1987.
Reference: [14] Tucker, H.: A Graduate Course in Probability.Academic Press, London 1967. MR 0221541
Reference: [15] Vaart, A. W. van der, Welner, J. A.: Weak Convergence and Empirical Processes.Second edition. Springer-Verlag, New York 2000.
Reference: [16] Víšek, J. Á.: A cautionary note on the method of the Least Median of Squares reconsidered.In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes 1994,  254–259.
Reference: [17] Víšek, J. Á.: Sensitivity analysis of $M$-estimates.Ann. Inst. Statist. Math. 48 (1996), 469–495. MR 1424776, 10.1007/BF00050849
Reference: [18] Víšek, J. Á.: On high breakdown point estimation.Computational Statistics 11 (1996), 137–146. MR 1394545
Reference: [19] Víšek, J. Á.: Regression with high breakdown point.In: Robust 2000 (J Antoch and G. Dohnal, eds.), Union of Czech Math. and Phys. 2001,  324–356.
Reference: [20] Víšek, J. Á.: The least weighted squares I.The asymptotic linearity of normal equations. Bull. Czech Econometr. Soc. 9 (2002), 15, 31–58, 2002
Reference: [21] Víšek, J. Á.: The least weighted squares II.Consistency and asymptotic normality. Bull. Czech Econom. Soc. 9 (2002), 16, 1–28.
Reference: [22] Víšek, J. Á.: Sensitivity analysis of $M$-estimates of nonlinear regression model: Influence of data subsets.Ann. Inst. Statist. Math. 54 (2002), 261–290. Zbl 1013.62072, MR 1910173, 10.1023/A:1022465701229
Reference: [23] Víšek, J. Á.: The least trimmed squares.Sensitivity study. In: Proc. Prague Stochastics 2006, (M. Hušková and M. Janžura, eds.) Matfyzpress 2006,  728–738. Zbl 1248.62035
Reference: [24] Víšek, J. Á.: Robust error-term-scale estimate.IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 7 (2010), 254–267. MR 2808385
Reference: [25] Víšek, J. Á.: Empirical distribution function under heteroscedasticity.To appear in Statistics. http://www.informaworld.com/smpp/content?db=all&content=a922317072. MR 2832181
.

Files

Files Size Format View
Kybernetika_47-2011-2_2.pdf 417.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo