Previous |  Up |  Next

Article

Title: Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points (English)
Author: Flores-Hernández, Rosa María
Author: Montes-de-Oca, Raúl
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 47
Issue: 2
Year: 2011
Pages: 207-221
Summary lang: English
.
Category: math
.
Summary: In this paper conditions proposed in Flores-Hernández and Montes-de-Oca [3] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied. (English)
Keyword: monotone maximizer in an optimization problem
Keyword: noncooperative game
Keyword: supermodular game
Keyword: increasing optimal best response for each player
Keyword: equilibrium point
MSC: 91A10
idZBL: Zbl 1215.91004
idMR: MR2828573
.
Date available: 2011-06-06T14:54:06Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141568
.
Reference: [1] Altman, E., Altman, Z.: S-modular games and power control in wireless networks.IEEE Trans. Automat. Control 48 (2003), 839–842. MR 1980592, 10.1109/TAC.2003.811264
Reference: [2] Burger, E.: Introduction to the Theory of Games.Prentice Hall, Englewood Cliffs, N. J. 1963. Zbl 0112.12502
Reference: [3] Flores-Hernández, R. M., Montes-de-Oca, R.: Monotonicity of minimizers in optimization problems with applications to Markov control processes.Kybernetika 43 (2007), 347–368. Zbl 1170.90513, MR 2362724
Reference: [4] Fudenberg, D., Tirole, J.: Game Theory.The MIT Press, Cambridge 1991. MR 1124618
Reference: [5] Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities.Econometrica 58 (1990), 1255–1277. Zbl 0728.90098, MR 1080810, 10.2307/2938316
Reference: [6] Rieder, U.: Measurable selection theorems for optimization problems.Manuscripta Math. 24 (1978), 115–131. Zbl 0385.28005, MR 0493590, 10.1007/BF01168566
Reference: [7] Sundaram, R. K.: A First Course in Optimization Theory.Cambridge University Press, Cambridge 1996. Zbl 0885.90106, MR 1402910
Reference: [8] Topkis, D. M.: Minimizing a submodular function on a lattice.Oper. Res. 26 (1978), 305–321. Zbl 0379.90089, MR 0468177, 10.1287/opre.26.2.305
Reference: [9] Topkis, D. M.: Equilibrium points in nonzero-sum n-person submodular games.SIAM J. Control Optim. 17 (1979), 773–787. Zbl 0433.90091, MR 0548704, 10.1137/0317054
Reference: [10] Topkis, D. M.: Supermodularity and Complementarity.Princeton University Press, Princeton, N. J. 1998. MR 1614637
Reference: [11] Vives, X.: Nash equilibrium with strategic complementarities.J. Math. Econ. 19 (1990), 305–321. Zbl 0708.90094, MR 1047174, 10.1016/0304-4068(90)90005-T
Reference: [12] Yao, D. D.: S-modular games with queueing applications.Queueing Syst. 21 (1995), 449–475. Zbl 0858.90142, MR 1375684
.

Files

Files Size Format View
Kybernetika_47-2011-2_3.pdf 299.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo