Title:
|
Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points (English) |
Author:
|
Flores-Hernández, Rosa María |
Author:
|
Montes-de-Oca, Raúl |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
207-221 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper conditions proposed in Flores-Hernández and Montes-de-Oca [3] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied. (English) |
Keyword:
|
monotone maximizer in an optimization problem |
Keyword:
|
noncooperative game |
Keyword:
|
supermodular game |
Keyword:
|
increasing optimal best response for each player |
Keyword:
|
equilibrium point |
MSC:
|
91A10 |
idZBL:
|
Zbl 1215.91004 |
idMR:
|
MR2828573 |
. |
Date available:
|
2011-06-06T14:54:06Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141568 |
. |
Reference:
|
[1] Altman, E., Altman, Z.: S-modular games and power control in wireless networks.IEEE Trans. Automat. Control 48 (2003), 839–842. MR 1980592, 10.1109/TAC.2003.811264 |
Reference:
|
[2] Burger, E.: Introduction to the Theory of Games.Prentice Hall, Englewood Cliffs, N. J. 1963. Zbl 0112.12502 |
Reference:
|
[3] Flores-Hernández, R. M., Montes-de-Oca, R.: Monotonicity of minimizers in optimization problems with applications to Markov control processes.Kybernetika 43 (2007), 347–368. Zbl 1170.90513, MR 2362724 |
Reference:
|
[4] Fudenberg, D., Tirole, J.: Game Theory.The MIT Press, Cambridge 1991. MR 1124618 |
Reference:
|
[5] Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities.Econometrica 58 (1990), 1255–1277. Zbl 0728.90098, MR 1080810, 10.2307/2938316 |
Reference:
|
[6] Rieder, U.: Measurable selection theorems for optimization problems.Manuscripta Math. 24 (1978), 115–131. Zbl 0385.28005, MR 0493590, 10.1007/BF01168566 |
Reference:
|
[7] Sundaram, R. K.: A First Course in Optimization Theory.Cambridge University Press, Cambridge 1996. Zbl 0885.90106, MR 1402910 |
Reference:
|
[8] Topkis, D. M.: Minimizing a submodular function on a lattice.Oper. Res. 26 (1978), 305–321. Zbl 0379.90089, MR 0468177, 10.1287/opre.26.2.305 |
Reference:
|
[9] Topkis, D. M.: Equilibrium points in nonzero-sum n-person submodular games.SIAM J. Control Optim. 17 (1979), 773–787. Zbl 0433.90091, MR 0548704, 10.1137/0317054 |
Reference:
|
[10] Topkis, D. M.: Supermodularity and Complementarity.Princeton University Press, Princeton, N. J. 1998. MR 1614637 |
Reference:
|
[11] Vives, X.: Nash equilibrium with strategic complementarities.J. Math. Econ. 19 (1990), 305–321. Zbl 0708.90094, MR 1047174, 10.1016/0304-4068(90)90005-T |
Reference:
|
[12] Yao, D. D.: S-modular games with queueing applications.Queueing Syst. 21 (1995), 449–475. Zbl 0858.90142, MR 1375684 |
. |