Previous |  Up |  Next

Article

Title: Stability and sliding modes for a class of nonlinear time delay systems (English)
Author: Răsvan, Vladimir
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 2
Year: 2011
Pages: 155-164
Summary lang: English
.
Category: math
.
Summary: The following time delay system $$ \dot {x} = Ax(t) + \sum _1^rbq_i^*x(t-\tau _i)-b\varphi (c^*x(t)) $$ is considered, where $\varphi \colon \mathbb {R}\to \mathbb {R}$ may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given. (English)
Keyword: time lag
Keyword: extended nonlinearity
Keyword: absolute stability
MSC: 34A36
MSC: 34D20
MSC: 34K20
MSC: 93C23
MSC: 93D10
idZBL: Zbl 1224.34246
idMR: MR2856132
DOI: 10.21136/MB.2011.141578
.
Date available: 2011-06-07T11:28:44Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141578
.
Reference: [1] Anosov, D. V.: About the stability of equilibria of the relay systems.Russian Avtomat. i Telemekhanika 20 (1959), 135-149. MR 0104530
Reference: [2] Gelig, A. Kh.: Stability analysis of nonlinear discontinuous control systems with non-unique equilibrium state.Russian Avtomat. i Telemekhanika 25 (1964), 153-160. MR 0182485
Reference: [3] Gelig, A. Kh.: Stability of controlled systems with bounded nonlinearities.Russian Avtomat. i Telemekhanika 29 (1969), 15-22. Zbl 0209.16101, MR 0453038
Reference: [4] Gelig, A. Kh., Leonov, G. A., Yakubovich, V. A.: Stability of Nonlinear Systems with Non-unique Equilibrium State.Nauka, Moskva, 1978 Russian; World Scientific, Singapore, 2004. English.
Reference: [5] Halanay, A.: Differential Equations. Stability. Oscillations.Time Lags. Academic Press, New York (1966). Zbl 0144.08701, MR 0216103
Reference: [6] Halanay, A.: On the controllability of linear difference-differential systems.Math. Systems Theory Econom. 2 (1969), 329-336 (1969). Zbl 0185.23601, MR 0321566, 10.1007/978-3-642-46196-5_16
Reference: [7] Popov, V. M.: Hyperstability of Control Systems.Editura Academiei, Bucharest & Springer, Berlin (1973). Zbl 0276.93033, MR 0387749
Reference: [8] Răsvan, Vl.: Absolute Stability of Time Lag Control Systems.Romanian Editura Academiei, Bucharest, 1975 improved Russian version by Nauka, Moskva, 1983. MR 0453048
Reference: [9] Răsvan, Vl., Danciu, D., Popescu, D.: Nonlinear and time delay systems for flight control.Math. Repts. 11 (2009), 359-367. Zbl 1212.34247, MR 2656171
Reference: [10] Richard, J. P., Gouaisbaut, F., Perruquetti, W.: Sliding mode control in the presence of delay.Kybernetika 37 (2001), 277-294. Zbl 1265.93046, MR 1859086
.

Files

Files Size Format View
MathBohem_136-2011-2_4.pdf 254.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo