Previous |  Up |  Next

Article

Title: Homogenization of quadratic complementary energies: a duality example (English)
Author: Serrano, Hélia
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 2
Year: 2011
Pages: 165-173
Summary lang: English
.
Category: math
.
Summary: We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of $\Gamma $-convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, $\Gamma $-convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true. (English)
Keyword: $\Gamma $-convergence
Keyword: oscillatory behaviour
Keyword: Young measure
Keyword: conjugate functional
MSC: 35B27
MSC: 35J20
idZBL: Zbl 1224.35025
idMR: MR2856133
DOI: 10.21136/MB.2011.141579
.
Date available: 2011-06-07T11:29:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141579
.
Reference: [1] Ball, J.: A version of the fundamental theorem of Young measures. PDEs and continuum models of phase transitions.Lectures Notes in Physics 344. Springer, Berlin (1989). MR 1036070, 10.1007/BFb0024945
Reference: [2] Braides, A.: $\Gamma$-convergence for Beginners.Oxford University Press, Oxford (2002). Zbl 1198.49001, MR 1968440
Reference: [3] Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals.Oxford University Press (1998). Zbl 0911.49010, MR 1684713
Reference: [4] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047
Reference: [5] Maso, G. Dal: An Introduction to $\Gamma$-Convergence.Birkhäuser, Basel (1993). MR 1201152
Reference: [6] Giorgi, E. De, Franzoni, T.: Su un tipo di convergenza variazionale.Atti Accad. Naz. Lincei VIII. Ser, Rend. Cl. Sci. Mat. 58 (1975), Italien 842-850. Zbl 0339.49005, MR 0448194
Reference: [7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations.Springer, Berlin (1986). Zbl 0585.65077, MR 0851383
Reference: [8] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer, Berlin (1994). MR 1329546
Reference: [9] Pedregal, P.: Parametrized Measures and Variational Principles.Birkäuser, Basel (1997). Zbl 0879.49017, MR 1452107
Reference: [10] Pedregal, P.: $\Gamma$-convergence through Young measures.SIAM J. Math. Anal. 36 (2004), 423-440. Zbl 1077.49012, MR 2111784, 10.1137/S0036141003425696
Reference: [11] Pedregal, P., Serrano, H.: $\Gamma$-convergence of quadratic functionals with oscillatory linear perturbations.Nonlinear Anal., Theory Methods Appl. 70 (2009), 4178-4189. MR 2514750, 10.1016/j.na.2008.09.007
Reference: [12] Serrano, H.: On $\Gamma$-convergence in divergence-free fields through Young measures.J. Math. Anal. Appl. 359 (2009), 311-321. Zbl 1167.49016, MR 2542177, 10.1016/j.jmaa.2009.05.056
Reference: [13] Young, L. C.: Lectures on the Calculus of Variations and Optimal Control Theory.Launders Company, Philadelphia (1980).
.

Files

Files Size Format View
MathBohem_136-2011-2_5.pdf 231.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo