Title:
|
Homogenization of quadratic complementary energies: a duality example (English) |
Author:
|
Serrano, Hélia |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
165-173 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of $\Gamma $-convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, $\Gamma $-convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true. (English) |
Keyword:
|
$\Gamma $-convergence |
Keyword:
|
oscillatory behaviour |
Keyword:
|
Young measure |
Keyword:
|
conjugate functional |
MSC:
|
35B27 |
MSC:
|
35J20 |
idZBL:
|
Zbl 1224.35025 |
idMR:
|
MR2856133 |
DOI:
|
10.21136/MB.2011.141579 |
. |
Date available:
|
2011-06-07T11:29:21Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141579 |
. |
Reference:
|
[1] Ball, J.: A version of the fundamental theorem of Young measures. PDEs and continuum models of phase transitions.Lectures Notes in Physics 344. Springer, Berlin (1989). MR 1036070, 10.1007/BFb0024945 |
Reference:
|
[2] Braides, A.: $\Gamma$-convergence for Beginners.Oxford University Press, Oxford (2002). Zbl 1198.49001, MR 1968440 |
Reference:
|
[3] Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals.Oxford University Press (1998). Zbl 0911.49010, MR 1684713 |
Reference:
|
[4] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047 |
Reference:
|
[5] Maso, G. Dal: An Introduction to $\Gamma$-Convergence.Birkhäuser, Basel (1993). MR 1201152 |
Reference:
|
[6] Giorgi, E. De, Franzoni, T.: Su un tipo di convergenza variazionale.Atti Accad. Naz. Lincei VIII. Ser, Rend. Cl. Sci. Mat. 58 (1975), Italien 842-850. Zbl 0339.49005, MR 0448194 |
Reference:
|
[7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations.Springer, Berlin (1986). Zbl 0585.65077, MR 0851383 |
Reference:
|
[8] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals.Springer, Berlin (1994). MR 1329546 |
Reference:
|
[9] Pedregal, P.: Parametrized Measures and Variational Principles.Birkäuser, Basel (1997). Zbl 0879.49017, MR 1452107 |
Reference:
|
[10] Pedregal, P.: $\Gamma$-convergence through Young measures.SIAM J. Math. Anal. 36 (2004), 423-440. Zbl 1077.49012, MR 2111784, 10.1137/S0036141003425696 |
Reference:
|
[11] Pedregal, P., Serrano, H.: $\Gamma$-convergence of quadratic functionals with oscillatory linear perturbations.Nonlinear Anal., Theory Methods Appl. 70 (2009), 4178-4189. MR 2514750, 10.1016/j.na.2008.09.007 |
Reference:
|
[12] Serrano, H.: On $\Gamma$-convergence in divergence-free fields through Young measures.J. Math. Anal. Appl. 359 (2009), 311-321. Zbl 1167.49016, MR 2542177, 10.1016/j.jmaa.2009.05.056 |
Reference:
|
[13] Young, L. C.: Lectures on the Calculus of Variations and Optimal Control Theory.Launders Company, Philadelphia (1980). |
. |