Previous |  Up |  Next

Article

Title: Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems (English)
Author: Reitmann, Volker
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 2
Year: 2011
Pages: 185-194
Summary lang: English
.
Category: math
.
Summary: Realization theory for linear input-output operators and frequency-domain methods for the solvability of Riccati operator equations are used for the stability and instability investigation of a class of nonlinear Volterra integral equations in a Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-invariant control system generated by an abstract ODE in a weighted Sobolev space, which has the same stability properties as the Volterra equation. (English)
Keyword: infinite dimensional Volterra integral equation
Keyword: realization theory
Keyword: absolute instability
Keyword: frequency-domain method
MSC: 34B16
MSC: 34C25
MSC: 45D05
MSC: 47G10
MSC: 47H14
MSC: 93B15
MSC: 93D10
idZBL: Zbl 1224.93025
idMR: MR2856135
DOI: 10.21136/MB.2011.141581
.
Date available: 2011-06-07T11:30:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141581
.
Reference: [1] Berezanskii, Yu. M.: Eigenfunction Expansion of Self-Adjoint Operators.Naukova Dumka, Kiev (1965), Russian.
Reference: [2] Boichenko, V. A., Leonov, G. A., Reitmann, V.: Dimension Theory for Ordinary Differential Equations.Teubner-Texte zur Mathematik 141, Stuttgart (2005). Zbl 1094.34002, MR 2381409
Reference: [3] Brusin, V. A.: Apparatus of abstract differential equations in the investigation of integral equations of Volterra type.Sibirskii Mat. Zhurnal 18 (1977), 1246-1258 Russian. MR 0477622
Reference: [4] Gripenberg, G., Londen, S.-O., Staffans, O. J.: Volterra Integral and Functional Equations.Cambridge University Press, Cambridge (1990). Zbl 0695.45002, MR 1050319
Reference: [5] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations.Springer, Berlin (1971). Zbl 0203.09001, MR 0271512
Reference: [6] Reitmann, V., Kantz, H.: Stability investigation of Volterra integral equations by realization theory and frequency-domain methods.Preprint 61' (2004), Preprint series of the DFG priority program 1114 “Mathematical methods for time series analysis and digital image processing”. Available electronically via http://www.math.uni-bremen.de/zetem/DFG-Schwerpunkt/. MR 2086940
Reference: [7] Salamon, D.: Realization theory in Hilbert space.Math. Systems Theory 21 (1989), 147-164. Zbl 0668.93018, MR 0977021, 10.1007/BF02088011
Reference: [8] Wloka, J.: Partial Differential Equations.Cambridge University Press, Cambridge (1987). Zbl 0623.35006, MR 0895589
Reference: [9] Yakubovich, V. A.: Frequency-domain conditions for stability of nonlinear integral equations of control theory.Vestn. Leningr. Univ. 7 (1967), 109-125 Russian.
.

Files

Files Size Format View
MathBohem_136-2011-2_7.pdf 252.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo