Title:
|
Existence and non-existence of sign-changing solutions for a class of two-point boundary value problems involving one-dimensional $p$-Laplacian (English) |
Author:
|
Naito, Yūki |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
175-184 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the boundary value problem involving the one dimensional $p$-Laplacian, and establish the precise intervals of the parameter for the existence and non-existence of solutions with prescribed numbers of zeros. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations. (English) |
Keyword:
|
boundary value problem |
Keyword:
|
half-linear differential equation |
Keyword:
|
Sturm comparison theorem |
Keyword:
|
half-linear Prüfer transformation |
MSC:
|
34B08 |
MSC:
|
34B15 |
MSC:
|
34C10 |
idZBL:
|
Zbl 1224.34046 |
idMR:
|
MR2856134 |
DOI:
|
10.21136/MB.2011.141580 |
. |
Date available:
|
2011-06-07T11:30:00Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141580 |
. |
Reference:
|
[1] Agarwal, R. P., Lü, H., O'Regan, D.: Eigenvalues and the one-dimensional $p$-Laplacian.J. Math. Anal. Appl. 266 (2002), 383-400. Zbl 1002.34019, MR 1880513, 10.1006/jmaa.2001.7742 |
Reference:
|
[2] Pino, M. del, Elgueta, M., Manasevich, R.: A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'| \sp {p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$.J. Differential Equations 80 (1989), 1-13. MR 1003248, 10.1016/0022-0396(89)90093-4 |
Reference:
|
[3] Došlý, O.: Half-linear differential equations.Handbook of Differential Equations, Volume 1: Ordinary Differential Equations. Vol. 1, 161-358, North-Holland, Amsterdam, Elsevier (2004). Zbl 1090.34027, MR 2166491 |
Reference:
|
[4] Došlý, O., Řehák, P.: Half-Linear Differential Equations.North-Holland, Amsterdam, Elsevier (2005). Zbl 1090.34001, MR 2158903 |
Reference:
|
[5] Elbert, Á.: A half-linear second order differential equation. Qualitative theory of differential equations.Colloq. Math. Soc. János Bolyai. 30 (1981), 153-180. MR 0680591 |
Reference:
|
[6] Hai, D. D., Schmitt, K., Shivaji, R.: Positive solutions of quasilinear boundary value problems.J. Math. Anal. Appl. 217 (1998), 672-686. Zbl 0893.34017, MR 1492111, 10.1006/jmaa.1997.5762 |
Reference:
|
[7] He, X., Ge, W.: Twin positive solutions for the one-dimensional $p$-Laplacian boundary value problems.Nonlinear Anal. 56 (2004), 975-984. Zbl 1061.34013, MR 2038732, 10.1016/j.na.2003.07.022 |
Reference:
|
[8] Kusano, T., Naito, M.: Sturm-Liouville eigenvalue problems for half-linear ordinary differential equations.Rocky Mountain J. Math. 31 (2001), 1039-1054. Zbl 1006.34025, MR 1877333, 10.1216/rmjm/1020171678 |
Reference:
|
[9] Kong, L., Wang, J.: Multiple positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Anal. 42 (2000), 1327-1333. Zbl 0961.34012, MR 1784078, 10.1016/S0362-546X(99)00143-1 |
Reference:
|
[10] Li, H. J., Yeh, C. C.: Sturmian comparison theorem for half-linear second-order differential equations.Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193-1204. Zbl 0873.34020, MR 1362999 |
Reference:
|
[11] Manasevich, R., Zanolin, F.: Time-mappings and multiplicity of solutions for the one-dimensional $p$-Laplacian.Nonlinear Anal. 21 (1993), 269-291. Zbl 0792.34021, MR 1237587 |
Reference:
|
[12] Naito, Y., Tanaka, S.: Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 69 (2008), 3070-3083. Zbl 1157.34010, MR 2452116, 10.1016/j.na.2007.09.002 |
Reference:
|
[13] Sánchez, J.: Multiple positive solutions of singular eigenvalue type problems involving the one-dimensional $p$-Laplacian.J. Math. Anal. Appl. 292 (2004), 401-414. Zbl 1057.34012, MR 2047620, 10.1016/j.jmaa.2003.12.005 |
Reference:
|
[14] Wang, J.: The existence of positive solutions for the one-dimensional $p$-Laplacian.Proc. Amer. Math. Soc. 125 (1997), 2275-2283. Zbl 0884.34032, MR 1423340, 10.1090/S0002-9939-97-04148-8 |
. |