Previous |  Up |  Next

Article

Title: Regularity and uniqueness in quasilinear parabolic systems (English)
Author: Krejčí, Pavel
Author: Panizzi, Lucia
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 4
Year: 2011
Pages: 341-370
Summary lang: English
.
Category: math
.
Summary: Inspired by a problem in steel metallurgy, we prove the existence, regularity, uniqueness, and continuous data dependence of solutions to a coupled parabolic system in a smooth bounded 3D domain, with nonlinear and nonhomogeneous boundary conditions. The nonlinear coupling takes place in the diffusion coefficient. The proofs are based on anisotropic estimates in tangential and normal directions, and on a refined variant of the Gronwall lemma. (English)
Keyword: parabolic system
Keyword: regularity
Keyword: uniqueness
MSC: 35A02
MSC: 35B65
MSC: 35K51
MSC: 35K59
MSC: 35K60
idZBL: Zbl 1240.35234
idMR: MR2833166
DOI: 10.1007/s10492-011-0020-5
.
Date available: 2011-06-23T13:07:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141598
.
Reference: [1] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics, Vol. 65.Academic Press New York-London (1975). MR 0450957
Reference: [2] Barrett, J. W., Deckelnick, K.: Existence, uniqueness and approximation of a doubly-degenerate nonlinear parabolic system modelling bacterial evolution.Math. Models Methods Appl. Sci. 17 (2007), 1095-1127. Zbl 1144.35026, MR 2337432, 10.1142/S0218202507002212
Reference: [3] Besov, O. V., Il'in, V. P., Nikol'skij, S. M.: Integral Representations of Functions and Imbedding Theorems. Scripta Series in Mathematics (Vol. I, Vol. II).V. H. Winston & Sons, John Wiley & Sons Washington/New York (1978), 1979; Russian version Nauka, Moscow, 1975. MR 0430771
Reference: [4] Fasano, A., Hömberg, D., Panizzi, L.: A mathematical model for case hardening of steel.Math. Models Methods Appl. Sci. 19 (2009), 2101-2126. Zbl 1180.35277, MR 2588960, 10.1142/S0218202509004054
Reference: [5] Griepentrog, J. A.: Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces.Adv. Differ. Equ. 12 (2007), 1031-1078. Zbl 1157.35023, MR 2351837
Reference: [6] Koshelev, A. I.: Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Lecture Notes in Mathematics, 1614.Springer Berlin (1995). MR 1442954
Reference: [7] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society Transl. 23.AMS Providence (1968).
Reference: [8] Lions, J.-L.: Quelques méthodes de résolution des problemes aux limites non linéaires.Dunod/Gauthier-Villars Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [9] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific Publishing Co., Inc. Singapore (1996). Zbl 0884.35001, MR 1465184
Reference: [10] Nečas, J.: Les méthodes directes en théorie des équations elliptiques.Academia Prague (1967). MR 0227584
Reference: [11] Rodrigues, J. F.: A nonlinear parabolic system arising in thermomechanics and in thermomagnetism.Math. Models Methods Appl. Sci. 2 (1992), 271-281. Zbl 0763.35093, MR 1181337, 10.1142/S021820259200017X
Reference: [12] Shilkin, T.: Classical solvability of the coupled system modelling a heat-convergent Poiseuille-type flow.J. Math. Fluid Mech. 7 (2005), 72-84. Zbl 1065.35135, MR 2127742, 10.1007/s00021-004-0112-z
.

Files

Files Size Format View
AplMat_56-2011-4_1.pdf 388.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo