Previous |  Up |  Next

Article

Title: Some results for fractional impulsive boundary value problems on infinite intervals (English)
Author: Zhao, Xiangkui
Author: Ge, Weigao
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 4
Year: 2011
Pages: 371-387
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions. (English)
Keyword: fractional derivative
Keyword: impulsive equations
Keyword: positive solutions
Keyword: fixed point theorem
Keyword: monotone iterative method
MSC: 26A33
MSC: 34A08
MSC: 34A37
MSC: 34B37
MSC: 34B40
idZBL: Zbl 1240.26011
idMR: MR2833167
DOI: 10.1007/s10492-011-0021-4
.
Date available: 2011-06-23T13:08:25Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141600
.
Reference: [1] Agarwal, R. P., O'Regan, D.: Multiple nonnegative solutions for second order impulsive differential equations.Appl. Math. Comput. 114 (2000), 51-59. Zbl 1047.34008, MR 1775121, 10.1016/S0096-3003(99)00074-0
Reference: [2] Ahmeda, E., Elgazzar, A. S.: On fractional order differential equations model for nonlocal epidemics.Physic A 379 (2007), 607-614. 10.1016/j.physa.2007.01.010
Reference: [3] Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation.J. Math. Anal. Appl. 311 (2005), 495-505. Zbl 1079.34048, MR 2168413, 10.1016/j.jmaa.2005.02.052
Reference: [4] Ding, W., Han, M.: Periodic boundary value problem for the second order impulsive functional differential equations.Appl. Math. Comput. 155 (2004), 709-726. Zbl 1102.34324, MR 2078208, 10.1016/S0096-3003(03)00811-7
Reference: [5] He, J. H.: Nonlinear oscillation with fractional derivative and its applications.In: International Conference on Vibrating Engineering, Dalian, China (1998), 288-291.
Reference: [6] He, J. H.: Some applications of nonlinear fractional differential equations and their approximations.Bull. Sci. Technol. 15 (1999), 86-90.
Reference: [7] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media.Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68. Zbl 0942.76077, MR 1665221, 10.1016/S0045-7825(98)00108-X
Reference: [8] Hristova, S. G., Bainov, D. D.: Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations.J. Math. Anal. Appl. 197 (1996), 1-13. Zbl 0849.34051, MR 1371270, 10.1006/jmaa.1996.0001
Reference: [9] Lee, E. K., Lee, Y.-H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation.Appl. Math. Comput. 158 (2004), 745-759. MR 2095700, 10.1016/j.amc.2003.10.013
Reference: [10] Liu, X., Guo, D.: Periodic boundary value problems for a class of second-order impulsive integro-differential equations in Banach spaces.J. Math. Anal. Appl. 216 (1997), 284-302. Zbl 0889.45016, MR 1487265, 10.1006/jmaa.1997.5688
Reference: [11] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics.In: Fractals and Fractional Calculus in Continuum Mechanics A. Carpinteri, F. Mainardi Springer New York (1997), 291-348. MR 1611587
Reference: [12] Ouahab, A.: Some results for fractional boundary value problem of differential inclusions.Nonlinear Anal., Theory Methods Appl. 69 (2008), 3877-3896. Zbl 1169.34006, MR 2463341, 10.1016/j.na.2007.10.021
Reference: [13] Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations.Appl. Math. Lett. 22 (2009), 64-69. Zbl 1163.34321, MR 2483163, 10.1016/j.aml.2008.03.001
Reference: [14] Wei, Z.: Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces.J. Math. Anal. Appl. 195 (1995), 214-229. Zbl 0849.45006, MR 1352819, 10.1006/jmaa.1995.1351
Reference: [15] Yan, B.: Boundary value problems on the half-line with impulses and infinite delay.J. Math. Anal. Appl. 259 (2001), 94-114. Zbl 1009.34059, MR 1836447, 10.1006/jmaa.2000.7392
Reference: [16] Yan, B., Liu, Y.: Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line.Appl. Math. Comput. 147 (2004), 629-644. Zbl 1045.34009, MR 2011077, 10.1016/S0096-3003(02)00801-9
.

Files

Files Size Format View
AplMat_56-2011-4_2.pdf 283.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo