Title:
|
Monotone measures with bad tangential behavior in the plane (English) |
Author:
|
Černý, Robert |
Author:
|
Kolář, Jan |
Author:
|
Rokyta, Mirko |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
317-339 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that for every $\varepsilon > 0$, there is a set $A\subset \mathbb R^2$ such that $\mathcal H^1 \llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are not unique and $\mathcal H^1 \llcorner A$ has the $1$-dimensional density between $1$ and $3+\varepsilon $ everywhere on the support. (English) |
Keyword:
|
monotone measure |
Keyword:
|
monotonicity formula |
Keyword:
|
tangent measure |
MSC:
|
49J45 |
idZBL:
|
Zbl 1249.49019 |
idMR:
|
MR2843226 |
. |
Date available:
|
2011-08-15T19:06:39Z |
Last updated:
|
2013-10-14 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141604 |
. |
Reference:
|
[1] Černý R.: Local monotonicity of measures supported by graphs of convex functions.Publ. Mat. 48 (2004), 369–380. MR 2091010 |
Reference:
|
[2] Černý R., Kolář J., Rokyta M.: Concentrated monotone measures with non-unique tangential behaviour in $R^3$.Czechoslovak Math. J.(to appear). MR 2886262 |
Reference:
|
[3] Kolář J.: Non-regular tangential behaviour of a monotone measure.Bull. London Math. Soc. 38 (2006), 657–666. MR 2250758, 10.1112/S0024609306018637 |
Reference:
|
[4] Mattila P.: Geometry of Sets and Measures in Euclidean Spaces.Cambridge University Press, Cambridge, 1995. Zbl 0911.28005, MR 1333890 |
Reference:
|
[5] Preiss D.: Geometry of measures in $\mathbb R^n$: Distribution, rectifiability and densities.Ann. Math. 125 (1987), 537–643. MR 0890162, 10.2307/1971410 |
Reference:
|
[6] Simon L.: Lectures on geometric measure theory.Proc. C.M.A., Australian National University Vol. 3, 1983. Zbl 0546.49019, MR 0756417 |
. |