Previous |  Up |  Next


Title: Monotone measures with bad tangential behavior in the plane (English)
Author: Černý, Robert
Author: Kolář, Jan
Author: Rokyta, Mirko
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 3
Year: 2011
Pages: 317-339
Summary lang: English
Category: math
Summary: We show that for every $\varepsilon > 0$, there is a set $A\subset \mathbb R^2$ such that $\mathcal H^1 \llcorner A$ is a monotone measure, the corresponding tangent measures at the origin are not unique and $\mathcal H^1 \llcorner A$ has the $1$-dimensional density between $1$ and $3+\varepsilon $ everywhere on the support. (English)
Keyword: monotone measure
Keyword: monotonicity formula
Keyword: tangent measure
MSC: 49J45
idZBL: Zbl 1249.49019
idMR: MR2843226
Date available: 2011-08-15T19:06:39Z
Last updated: 2013-10-14
Stable URL:
Reference: [1] Černý R.: Local monotonicity of measures supported by graphs of convex functions.Publ. Mat. 48 (2004), 369–380. MR 2091010
Reference: [2] Černý R., Kolář J., Rokyta M.: Concentrated monotone measures with non-unique tangential behaviour in $R^3$.Czechoslovak Math. J.(to appear). MR 2886262
Reference: [3] Kolář J.: Non-regular tangential behaviour of a monotone measure.Bull. London Math. Soc. 38 (2006), 657–666. MR 2250758, 10.1112/S0024609306018637
Reference: [4] Mattila P.: Geometry of Sets and Measures in Euclidean Spaces.Cambridge University Press, Cambridge, 1995. Zbl 0911.28005, MR 1333890
Reference: [5] Preiss D.: Geometry of measures in $\mathbb R^n$: Distribution, rectifiability and densities.Ann. Math. 125 (1987), 537–643. MR 0890162, 10.2307/1971410
Reference: [6] Simon L.: Lectures on geometric measure theory.Proc. C.M.A., Australian National University Vol. 3, 1983. Zbl 0546.49019, MR 0756417


Files Size Format View
CommentatMathUnivCarolRetro_52-2011-3_1.pdf 337.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo