Previous |  Up |  Next

Article

Title: Further remarks on KC and related spaces (English)
Author: Bella, Angelo
Author: Costantini, Camillo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 3
Year: 2011
Pages: 417-426
Summary lang: English
.
Category: math
.
Summary: A topological space is KC when every compact set is closed and SC when every convergent sequence together with its limit is closed. We present a complete description of KC-closed, SC-closed and SC minimal spaces. We also discuss the behaviour of the finite derived set property in these classes. (English)
Keyword: compact space
Keyword: KC space
Keyword: SC space
Keyword: minimal KC space
Keyword: minimal SC space
Keyword: KC-closed space
Keyword: SC-closed space
Keyword: sequentially compact space
Keyword: finite derived set property
Keyword: wD property
MSC: 54A25
MSC: 54A35
MSC: 54D10
MSC: 54D25
idZBL: Zbl 1249.54056
idMR: MR2843233
.
Date available: 2011-08-15T19:20:18Z
Last updated: 2013-10-14
Stable URL: http://hdl.handle.net/10338.dmlcz/141612
.
Reference: [1] Alas O.T., Wilson R.G.: Minimal properties between $T_1$ and $T_2$.Houston J. Math. 32 (2006), no. 2, 493–504. Zbl 1100.54018, MR 2219327
Reference: [2] Alas O.T., Wilson R.G.: When is a compact space sequentially compact?.Topology Proc. 29 (2005), no. 2, 327–335. Zbl 1126.54010, MR 2244478
Reference: [3] Alas O.T., Wilson R.G.: Spaces in which compact subsets are closed and the lattice of $T_1$ topologies on a set.Comment. Math. Univ. Carolin. 43 (2002), no. 4, 641–652. Zbl 1090.54015, MR 2045786
Reference: [4] Alas O.T., Tkachenko M.G., Tkachuk V., Wilson R.G.: The FDS-property and the spaces in which compact sets are closed.Sci. Math. Jpn. 61 (2005), no. 3, 473–480. MR 2140109
Reference: [5] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $N$ covered by nowhere dense sets.Fund. Math. 110 (1980), no. 1, 11–24. Zbl 0568.54004, MR 0600576
Reference: [6] Bella A.: Remarks on the finite derived set property.Appl. Gen. Topol. 6 (2005), no. 1, 101–106. Zbl 1074.54002, MR 2153430
Reference: [7] Baldovino C., Costantini C.: On some questions about $KC$ and related spaces.Topology Appl. 156 (2009), no. 17, 2692–2703. Zbl 1183.54012, MR 2556028, 10.1016/j.topol.2009.07.010
Reference: [8] Bella A., Costantini C.: Minimal $KC$ spaces are compact.Topology Appl. 155 (2008), no. 13, 1426–1429. Zbl 1145.54014, MR 2427414, 10.1016/j.topol.2008.04.005
Reference: [9] Bella A., Nyikos P.J.: Sequential compactness vs. countable compactness.Colloq. Math. 120 (2010), no. 2, 165–189. MR 2672268, 10.4064/cm120-2-1
Reference: [10] van Douwen E.K.: The integers and topology.in Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, editors, North-Holland, Amsterdam, 1984, Chapter 3, pp. 111–167. Zbl 0561.54004, MR 0776622
Reference: [11] Gryzlov A.A.: Two theorems on the cardinality of topological spaces.Dokl. Akad. Nauk SSSR 251 (1980), no. 4, 780–783; Soviet Math. Dokl. 21 (1980), no. 2, 506–509. Zbl 0449.54005, MR 0568530
Reference: [12] Shakhmatov D., Tkachenko M.G., Wilson R.G.: Transversal and $T_1$-independent topologies.Houston J. Math. 30 (2004), no. 2, 421–433.
Reference: [13] Vaughan J.E.: Small uncountable cardinals and topology.in Open Problems in Topology, J. van Mill and G.M. Reed, editors, North-Holland, Amsterdam, 1990, pp. 195–218. MR 1078647
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-3_8.pdf 245.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo