Previous |  Up |  Next

Article

Title: Closed discrete subsets of separable spaces and relative versions of normality, countable paracompactness and property $(a)$ (English)
Author: Silva, Samuel Gomes da
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 3
Year: 2011
Pages: 435-444
Summary lang: English
.
Category: math
.
Summary: In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property $(a)$. It follows that it is consistent that closed discrete subsets of a separable space $X$ which are also relatively normal (relatively countably paracompact, relatively $(a)$) in $X$ are necessarily countable. There are, however, consistent examples of separable spaces with uncountable closed discrete subsets under the described relative topological requirements, and therefore the existence of such uncountable sets is undecidable within ZFC. We also investigate what are the outcomes of considering the set-theoretical hypothesis ``$2^{\omega} < 2^{\omega_1}$'' within our discussion and conclude by giving some notes and posing some questions. (English)
Keyword: relative normality
Keyword: relative countable paracompactness
Keyword: relative property $(a)$
Keyword: closed discrete subsets
Keyword: separable spaces
MSC: 03E55
MSC: 54A25
MSC: 54A35
MSC: 54B05
MSC: 54D20
MSC: 54D45
idZBL: Zbl 1249.54012
idMR: MR2843235
.
Date available: 2011-08-15T19:22:53Z
Last updated: 2013-10-14
Stable URL: http://hdl.handle.net/10338.dmlcz/141614
.
Reference: [1] Arhangel'skii A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), no. 2–3, 87–99. Zbl 0848.54016, MR 1397067, 10.1016/0166-8641(95)00086-0
Reference: [2] Arhangel'skii A.V., Genedi H.M.M.: Beginnings of the theory of relative topological properties.in General Topology. Spaces and Mappings (MGU, Moscow, 1989) 348 (in Russian).
Reference: [3] Arhangel'skii A.V.: Relative normality and dense subspaces.Topology Appl. 123 (2002), 27–36. Zbl 1008.54013, MR 1921644, 10.1016/S0166-8641(01)00166-3
Reference: [4] Bell M.G.: On the combinatorial principle $P(c)$.Fund. Math. 114 (1981), no. 2, 149–157. MR 0643555
Reference: [5] Comfort W.W.: Cofinal families in certain function spaces.Comment. Math. Univ. Carolin. 29 (1988), no. 4, 665–675. Zbl 0666.54002, MR 0982784
Reference: [6] Dow A., Vermeer J.: An example concerning the property of a space being Lindelöf in another.Topology Appl. 51 (1993), no. 3, 255–259. Zbl 0827.54014, MR 1237391, 10.1016/0166-8641(93)90080-W
Reference: [7] Fleissner W.: Separation properties in Moore spaces.Fund. Math. 98 (1978), no. 3, 279–286. Zbl 0376.54010, MR 0478111
Reference: [8] Gartside P.M., Glyn A.: Relative separation properties.Topology Appl. 122 (2002), no. 3, 625–636. Zbl 1005.54024, MR 1911705, 10.1016/S0166-8641(01)00194-8
Reference: [9] Jech T., Prikry K.: Cofinality of the partial ordering of functions from $\omega_1$ into $\omega$ under eventual domination.Math. Proc. Cambridge Philos. Soc. 95 (1984), 25–32. MR 0727077, 10.1017/S0305004100061272
Reference: [10] Jones F.B.: Concerning normal and completely normal spaces.Bull. Amer. Math. Soc. 43 (1937), 671–677. Zbl 0017.42902, MR 1563615, 10.1090/S0002-9904-1937-06622-5
Reference: [11] Kawaguchi S., Sokei R.: Some relative properties on normality and paracompactness, and their absolute embeddings.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 475–495. Zbl 1121.54018, MR 2174526
Reference: [12] Matveev M.V.: Some questions on property $(a)$.Questions Answers Gen. Topology 15 (1997), no. 2, 103–111. Zbl 1002.54016, MR 1472172
Reference: [13] Matveev M.V., Pavlov O.I., Tartir J.K.: On relatively normal spaces, relatively regular spaces, and on relative property $(a)$.Topology Appl. 93 (1999), no. 2, 121–129. Zbl 0951.54017, MR 1680839, 10.1016/S0166-8641(97)00265-4
Reference: [14] Moore J.T., Hrušák M., Džamonja M.: Parametrized $\diamondsuit $ principles.Trans. Amer. Math. Soc. 356 (2004), 2281–2306. MR 2048518, 10.1090/S0002-9947-03-03446-9
Reference: [15] Morgan C.J.G., da Silva S.G.: Almost disjoint families and “never” cardinal invariants.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 433–444. Zbl 1212.03032, MR 2573416
Reference: [16] Morgan C.J.G., da Silva S.G.: Covering properties which, under weak diamond principles, constrain the extents of separable spaces.Acta Math. Hungar. 128 (2010), no. 4, 358–368. MR 2670994, 10.1007/s10474-010-9210-y
Reference: [17] Morgan C.J.G., da Silva S.G.: A note on closed discrete subsets of separable $(a)$-spaces.Houston J. Math. 37 (2011), no. 4(to appear).
Reference: [18] da Silva S.G.: Property $(a)$ and dominating families.Comment. Math. Univ. Carolin. 46 (2005), no. 4, 667–684. Zbl 1121.54014, MR 2259498
Reference: [19] da Silva S.G.: On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families.Questions Answers Gen. Topology 25 (2007), no. 1, 1–18. MR 2319472
Reference: [20] da Silva S.G.: Large cardinals and topology: a short retrospective and some new results.Logic Journal of the IGPL 15, (2007), no. 5-6, 433–443. Zbl 1132.03024, MR 2382485
Reference: [21] Watson W.S.: Separation in countably paracompact spaces.Trans. Amer. Math. Soc. 290 (1985), 831–842. Zbl 0583.54013, MR 0792831, 10.1090/S0002-9947-1985-0792831-X
Reference: [22] Yasui Y.: Relative Properties.in Encyclopedia of General Topology, Hart K.P., Nagata J., and Vaughan J.E. (eds.), Elsevier, Amsterdam, 2004, pp. 33–36. MR 2049453
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-3_10.pdf 246.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo