Title:
|
Closed discrete subsets of separable spaces and relative versions of normality, countable paracompactness and property $(a)$ (English) |
Author:
|
Silva, Samuel Gomes da |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
435-444 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property $(a)$. It follows that it is consistent that closed discrete subsets of a separable space $X$ which are also relatively normal (relatively countably paracompact, relatively $(a)$) in $X$ are necessarily countable. There are, however, consistent examples of separable spaces with uncountable closed discrete subsets under the described relative topological requirements, and therefore the existence of such uncountable sets is undecidable within ZFC. We also investigate what are the outcomes of considering the set-theoretical hypothesis ``$2^{\omega} < 2^{\omega_1}$'' within our discussion and conclude by giving some notes and posing some questions. (English) |
Keyword:
|
relative normality |
Keyword:
|
relative countable paracompactness |
Keyword:
|
relative property $(a)$ |
Keyword:
|
closed discrete subsets |
Keyword:
|
separable spaces |
MSC:
|
03E55 |
MSC:
|
54A25 |
MSC:
|
54A35 |
MSC:
|
54B05 |
MSC:
|
54D20 |
MSC:
|
54D45 |
idZBL:
|
Zbl 1249.54012 |
idMR:
|
MR2843235 |
. |
Date available:
|
2011-08-15T19:22:53Z |
Last updated:
|
2013-10-14 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141614 |
. |
Reference:
|
[1] Arhangel'skii A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), no. 2–3, 87–99. Zbl 0848.54016, MR 1397067, 10.1016/0166-8641(95)00086-0 |
Reference:
|
[2] Arhangel'skii A.V., Genedi H.M.M.: Beginnings of the theory of relative topological properties.in General Topology. Spaces and Mappings (MGU, Moscow, 1989) 348 (in Russian). |
Reference:
|
[3] Arhangel'skii A.V.: Relative normality and dense subspaces.Topology Appl. 123 (2002), 27–36. Zbl 1008.54013, MR 1921644, 10.1016/S0166-8641(01)00166-3 |
Reference:
|
[4] Bell M.G.: On the combinatorial principle $P(c)$.Fund. Math. 114 (1981), no. 2, 149–157. MR 0643555 |
Reference:
|
[5] Comfort W.W.: Cofinal families in certain function spaces.Comment. Math. Univ. Carolin. 29 (1988), no. 4, 665–675. Zbl 0666.54002, MR 0982784 |
Reference:
|
[6] Dow A., Vermeer J.: An example concerning the property of a space being Lindelöf in another.Topology Appl. 51 (1993), no. 3, 255–259. Zbl 0827.54014, MR 1237391, 10.1016/0166-8641(93)90080-W |
Reference:
|
[7] Fleissner W.: Separation properties in Moore spaces.Fund. Math. 98 (1978), no. 3, 279–286. Zbl 0376.54010, MR 0478111 |
Reference:
|
[8] Gartside P.M., Glyn A.: Relative separation properties.Topology Appl. 122 (2002), no. 3, 625–636. Zbl 1005.54024, MR 1911705, 10.1016/S0166-8641(01)00194-8 |
Reference:
|
[9] Jech T., Prikry K.: Cofinality of the partial ordering of functions from $\omega_1$ into $\omega$ under eventual domination.Math. Proc. Cambridge Philos. Soc. 95 (1984), 25–32. MR 0727077, 10.1017/S0305004100061272 |
Reference:
|
[10] Jones F.B.: Concerning normal and completely normal spaces.Bull. Amer. Math. Soc. 43 (1937), 671–677. Zbl 0017.42902, MR 1563615, 10.1090/S0002-9904-1937-06622-5 |
Reference:
|
[11] Kawaguchi S., Sokei R.: Some relative properties on normality and paracompactness, and their absolute embeddings.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 475–495. Zbl 1121.54018, MR 2174526 |
Reference:
|
[12] Matveev M.V.: Some questions on property $(a)$.Questions Answers Gen. Topology 15 (1997), no. 2, 103–111. Zbl 1002.54016, MR 1472172 |
Reference:
|
[13] Matveev M.V., Pavlov O.I., Tartir J.K.: On relatively normal spaces, relatively regular spaces, and on relative property $(a)$.Topology Appl. 93 (1999), no. 2, 121–129. Zbl 0951.54017, MR 1680839, 10.1016/S0166-8641(97)00265-4 |
Reference:
|
[14] Moore J.T., Hrušák M., Džamonja M.: Parametrized $\diamondsuit $ principles.Trans. Amer. Math. Soc. 356 (2004), 2281–2306. MR 2048518, 10.1090/S0002-9947-03-03446-9 |
Reference:
|
[15] Morgan C.J.G., da Silva S.G.: Almost disjoint families and “never” cardinal invariants.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 433–444. Zbl 1212.03032, MR 2573416 |
Reference:
|
[16] Morgan C.J.G., da Silva S.G.: Covering properties which, under weak diamond principles, constrain the extents of separable spaces.Acta Math. Hungar. 128 (2010), no. 4, 358–368. MR 2670994, 10.1007/s10474-010-9210-y |
Reference:
|
[17] Morgan C.J.G., da Silva S.G.: A note on closed discrete subsets of separable $(a)$-spaces.Houston J. Math. 37 (2011), no. 4(to appear). |
Reference:
|
[18] da Silva S.G.: Property $(a)$ and dominating families.Comment. Math. Univ. Carolin. 46 (2005), no. 4, 667–684. Zbl 1121.54014, MR 2259498 |
Reference:
|
[19] da Silva S.G.: On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families.Questions Answers Gen. Topology 25 (2007), no. 1, 1–18. MR 2319472 |
Reference:
|
[20] da Silva S.G.: Large cardinals and topology: a short retrospective and some new results.Logic Journal of the IGPL 15, (2007), no. 5-6, 433–443. Zbl 1132.03024, MR 2382485 |
Reference:
|
[21] Watson W.S.: Separation in countably paracompact spaces.Trans. Amer. Math. Soc. 290 (1985), 831–842. Zbl 0583.54013, MR 0792831, 10.1090/S0002-9947-1985-0792831-X |
Reference:
|
[22] Yasui Y.: Relative Properties.in Encyclopedia of General Topology, Hart K.P., Nagata J., and Vaughan J.E. (eds.), Elsevier, Amsterdam, 2004, pp. 33–36. MR 2049453 |
. |