Title:
|
On $\pi$-caliber and an application of Prikry's partial order (English) |
Author:
|
Szymanski, Andrzej |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
463-471 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the concept of $\pi$-caliber as an alternative to the well known concept of caliber. $\pi$-caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, $\pi$-caliber may take on values below the Souslin number of a space. Under Martin's axiom, $2^{\omega }$ is a $\pi$-caliber of $\mathbb{N}^{\ast}$. Prikry's poset is used to settle a problem by Fedeli regarding possible values of very weak caliber. (English) |
Keyword:
|
nowhere dense |
Keyword:
|
point-$\kappa $ family |
Keyword:
|
$\pi $-caliber |
MSC:
|
03E35 |
MSC:
|
54A15 |
MSC:
|
54A38 |
idZBL:
|
Zbl 1249.54011 |
idMR:
|
MR2843237 |
. |
Date available:
|
2011-08-15T19:28:45Z |
Last updated:
|
2013-10-14 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141616 |
. |
Reference:
|
[1] Comfort W., Negrepontis S.: The Theory of Ultrafilters.Springer, New York-Heidelberg, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[2] Comfort W., Negrepontis S.: Chain Condition in Topology.Cambridge Tracts in Mathematics, 79, Cambridge University Press, Cambridge-New York, 1982. MR 0665100 |
Reference:
|
[3] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[4] Fedeli A.: On the $\kappa $-Baire property.Comment. Math. Univ. Carolin. 34 (1993), 525–527. MR 1243083 |
Reference:
|
[5] Fedeli A.: Weak calibers and the Scott-Watson theorem.Czechoslovak Math. J. 46 (1996), 421–425. Zbl 0879.54026, MR 1408297 |
Reference:
|
[6] Fletcher P., Lindgren W.: A note on spaces of second category.Arch. Math. (Basel) 24 (1973), 186–187. Zbl 0259.54019, MR 0315663, 10.1007/BF01228197 |
Reference:
|
[7] Jech T.: Set Theory.2nd edition, Springer, Berlin, 1997. Zbl 1007.03002, MR 1492987 |
Reference:
|
[8] Juhasz I.: Cardinal Functions in Topology: Ten Years After.Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980. MR 0576927 |
Reference:
|
[9] Kanamori A.: The Higher Infinite. Large Cardinals in Set Theory from their Beginnings.Perspectives in Mathematical Logic, Springer, Berlin, 1994. Zbl 1154.03033, MR 1321144 |
Reference:
|
[10] McCoy R.A., Smith J.C.: The almost Lindelöf property for Baire spaces.Topology Proc. 9 (1984), 99–104. Zbl 0559.54019, MR 0781554 |
Reference:
|
[11] Prikry K.: Changing measurable cardinals into accessible cardinals.Dissertationes Math. 68 (1970). MR 0262075 |
Reference:
|
[12] Šanin N.A.: On intersection of open subsets in the product of topological spaces.C. R. (Doklady) Acad. Sci. URSS 53 (1946), 499–501. MR 0018815 |
Reference:
|
[13] Šanin N.A.: On the product of topological spaces.Trudy Mat. Inst. Steklov. 24 (1948). MR 0027310 |
Reference:
|
[14] Tall F.D.: The countable chain condition versus separability --- applications of Martin's Axiom.General Topology Appl. 4 (1974), 315–339. Zbl 0293.54003, MR 0423284, 10.1016/0016-660X(74)90010-5 |
. |