Previous |  Up |  Next

Article

Title: On $\pi$-caliber and an application of Prikry's partial order (English)
Author: Szymanski, Andrzej
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 3
Year: 2011
Pages: 463-471
Summary lang: English
.
Category: math
.
Summary: We study the concept of $\pi$-caliber as an alternative to the well known concept of caliber. $\pi$-caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, $\pi$-caliber may take on values below the Souslin number of a space. Under Martin's axiom, $2^{\omega }$ is a $\pi$-caliber of $\mathbb{N}^{\ast}$. Prikry's poset is used to settle a problem by Fedeli regarding possible values of very weak caliber. (English)
Keyword: nowhere dense
Keyword: point-$\kappa $ family
Keyword: $\pi $-caliber
MSC: 03E35
MSC: 54A15
MSC: 54A38
idZBL: Zbl 1249.54011
idMR: MR2843237
.
Date available: 2011-08-15T19:28:45Z
Last updated: 2013-10-14
Stable URL: http://hdl.handle.net/10338.dmlcz/141616
.
Reference: [1] Comfort W., Negrepontis S.: The Theory of Ultrafilters.Springer, New York-Heidelberg, 1974. Zbl 0298.02004, MR 0396267
Reference: [2] Comfort W., Negrepontis S.: Chain Condition in Topology.Cambridge Tracts in Mathematics, 79, Cambridge University Press, Cambridge-New York, 1982. MR 0665100
Reference: [3] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Fedeli A.: On the $\kappa $-Baire property.Comment. Math. Univ. Carolin. 34 (1993), 525–527. MR 1243083
Reference: [5] Fedeli A.: Weak calibers and the Scott-Watson theorem.Czechoslovak Math. J. 46 (1996), 421–425. Zbl 0879.54026, MR 1408297
Reference: [6] Fletcher P., Lindgren W.: A note on spaces of second category.Arch. Math. (Basel) 24 (1973), 186–187. Zbl 0259.54019, MR 0315663, 10.1007/BF01228197
Reference: [7] Jech T.: Set Theory.2nd edition, Springer, Berlin, 1997. Zbl 1007.03002, MR 1492987
Reference: [8] Juhasz I.: Cardinal Functions in Topology: Ten Years After.Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980. MR 0576927
Reference: [9] Kanamori A.: The Higher Infinite. Large Cardinals in Set Theory from their Beginnings.Perspectives in Mathematical Logic, Springer, Berlin, 1994. Zbl 1154.03033, MR 1321144
Reference: [10] McCoy R.A., Smith J.C.: The almost Lindelöf property for Baire spaces.Topology Proc. 9 (1984), 99–104. Zbl 0559.54019, MR 0781554
Reference: [11] Prikry K.: Changing measurable cardinals into accessible cardinals.Dissertationes Math. 68 (1970). MR 0262075
Reference: [12] Šanin N.A.: On intersection of open subsets in the product of topological spaces.C. R. (Doklady) Acad. Sci. URSS 53 (1946), 499–501. MR 0018815
Reference: [13] Šanin N.A.: On the product of topological spaces.Trudy Mat. Inst. Steklov. 24 (1948). MR 0027310
Reference: [14] Tall F.D.: The countable chain condition versus separability --- applications of Martin's Axiom.General Topology Appl. 4 (1974), 315–339. Zbl 0293.54003, MR 0423284, 10.1016/0016-660X(74)90010-5
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-3_12.pdf 240.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo