Previous |  Up |  Next

Article

Title: Existence of solutions for abstract neutral integro-differential equations with unbounded delay (English)
Author: Hernández, Eduardo M.
Author: O'Regan, Donal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 691-706
Summary lang: English
.
Category: math
.
Summary: In this paper we study the existence of classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations is considered. (English)
Keyword: neutral equations
Keyword: classical solution
Keyword: analytic semigroup
Keyword: unbounded delay
MSC: 34K30
MSC: 34K40
MSC: 35R10
MSC: 45J05
idZBL: Zbl 1249.34217
idMR: MR2853084
DOI: 10.1007/s10587-011-0040-z
.
Date available: 2011-09-22T14:38:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141631
.
Reference: [1] Adimy, M., Ezzinbi, K.: A class of linear partial neutral functionaldifferential equations with nondense domain.J. Differ. Equations 147 (1998), 285-332. MR 1633941, 10.1006/jdeq.1998.3446
Reference: [2] Anguraj, A., Karthikeyan, K.: Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions.Nonlinear Anal., Theory Methods Appl. 70 (2009), 2717-2721. Zbl 1165.34416, MR 2499739, 10.1016/j.na.2008.03.059
Reference: [3] Balachandran, K., Sakthivel, R.: Existence of solutions of neutral functional integrodifferential equation in Banach spaces.Proc. Indian Acad. Sci., Math. Sci. 109 (1999), 325-332. MR 1709339, 10.1007/BF02843536
Reference: [4] Balachandran, K., Shija, G., Kim, J. H.: Existence of solutions of nonlinear abstract neutral integrodifferential equations.Comput. Math. Appl. 48 (2004), 1403-1414. Zbl 1083.45005, MR 2107098, 10.1016/j.camwa.2004.08.002
Reference: [5] Balasubramaniam, P., Park, J. Y., Kumar, A. V. A.: Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions.Nonlinear Anal., Theory Methods Appl. 71 (2009), 1049-1058. Zbl 1171.34054, MR 2527524, 10.1016/j.na.2008.11.032
Reference: [6] Benchohra, M., Ntouyas, S. K.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces.J. Math. Anal. Appl. 258 (2001), 573-590. Zbl 0982.45008, MR 1835560, 10.1006/jmaa.2000.7394
Reference: [7] Benchohra, M., Henderson, J., Ntouyas, S. K.: Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces.J. Math. Anal. Appl. 263 (2001), 763-780. Zbl 0998.34064, MR 1866239, 10.1006/jmaa.2001.7663
Reference: [8] Cannarsa, P., Sforza, D.: Global solutions of abstract semilinear parabolic equations with memory terms.NoDEA, Nonlinear Differ. Equ. Appl. 10 (2003), 399-430. Zbl 1052.35085, MR 2016932, 10.1007/s00030-003-1004-2
Reference: [9] Chang, Y. V., Anguraj, A., Karthikeyan, K.: Existence for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4377-4386. Zbl 1178.34071, MR 2548667, 10.1016/j.na.2009.02.121
Reference: [10] Clément, Ph., Nohel, J. A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels.SIAM J. Math. Anal. 12 (1981), 514-535. MR 0617711, 10.1137/0512045
Reference: [11] Clément, Ph., Prüss, J.: Global existence for a semilinear parabolic Volterra equation.Math. Z. 209 (1992), 17-26. MR 1143209, 10.1007/BF02570816
Reference: [12] Datko, R.: Linear autonomous neutral differential equations in a Banach space.J. Differ. Equations 25 (1977), 258-274. Zbl 0402.34066, MR 0447743, 10.1016/0022-0396(77)90204-2
Reference: [13] Dauer, J. P., Balachandran, K.: Existence of solutions of nonlinear neutral integrodifferential equations in Banach spaces.J. Math. Anal. Appl. 251 (2000), 93-105. Zbl 0966.45008, MR 1790400, 10.1006/jmaa.2000.7022
Reference: [14] Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds.Arch. Rat. Mech. Anal. 31 (1968), 113-126. Zbl 0164.12901, MR 1553521, 10.1007/BF00281373
Reference: [15] Henríquez, H. R., Pierri, M., Táboas, P.: Existence of $S$-asymptotically $\omega$-periodic solutions for abstract neutral equations.Bull. Aust. Math. Soc. 78 (2008), 365-382. MR 2472273, 10.1017/S0004972708000713
Reference: [16] Hernández, E., O'Regan, D.: Existence results for abstract partial neutral differential equations.Proc. Am. Math. Soc. 137 (2009), 3309-3318. MR 2515400, 10.1090/S0002-9939-09-09934-1
Reference: [17] Hernández, E., O'Regan, D.: $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations.Discrete Contin. Dyn. Syst. 29 (2011), 241-260. MR 2725289, 10.3934/dcds.2011.29.241
Reference: [18] Hernández, E., O'Regan, D.: Existence of solutions for abstract non-autonomous neutral differential equations.Can. Math. Bull Accepted.
Reference: [19] Hernández, E., Balachandran, K.: Existence results for abstract degenerate neutral functional differential equations.Bull. Aust. Math. Soc. 81 (2010), 329-342. MR 2609114, 10.1017/S000497270900104X
Reference: [20] Hernández, E., Henríquez, H. R.: Existence results for partial neutral functional integro-differential equation with unbounded delay.J. Math. Anal. Appl. 221 (1998), 452-475. MR 1621730, 10.1006/jmaa.1997.5875
Reference: [21] Hernández, E.: Existence results for partial neutral integro-differential equations with unbounded delay.J. Math. Anal. Appl. 292 (2004), 194-210. MR 2050224, 10.1016/j.jmaa.2003.11.052
Reference: [22] Hernández, E., Henríquez, H. R.: Existence of periodic solutions of partial neutral functional differential equation with unbounded delay.J. Math. Anal. Appl. 221 (1998), 499-522. MR 1621738, 10.1006/jmaa.1997.5899
Reference: [23] Hino, Y., Murakami, S., Naito, T.: Functional-Differential Equations With Infinite Delay. Lecture Notes in Mathematics, 1473.Springer Berlin (1991). MR 1122588
Reference: [24] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, 16.Birkhäuser Basel (1995). MR 1329547
Reference: [25] Lunardi, A.: On the linear heat equation with fading memory.SIAM J. Math. Anal. 21 (1990), 1213-1224. Zbl 0716.35031, MR 1062400, 10.1137/0521066
Reference: [26] Luo, J., Taniguchi, T.: The existence and uniqueness for non-Lipschitz stochastic neutral delay evolution equations driven by Poisson jumps.Stoch. Dyn. 9 (2009), 135-152. Zbl 1167.60336, MR 2502478, 10.1142/S0219493709002592
Reference: [27] Ntouyas, S. K., O'Regan, D.: Existence results for semilinear neutral functional differential inclusions via analytic semigroups.Acta Appl. Math. 98 (2007), 223-253. Zbl 1134.34054, MR 2338388, 10.1007/s10440-007-9157-3
Reference: [28] Nunziato, J. W.: On heat conduction in materials with memory.Q. Appl. Math. 29 (1971), 187-204. Zbl 0227.73011, MR 0295683, 10.1090/qam/295683
Reference: [29] Ren, Y., Chen, L.: A note on the neutral stochastic functional differential equation with infinite delay and Poisson jumps in an abstract space.J. Math. Phys. 50 (2009), 082704-082704-8. MR 2554419, 10.1063/1.3202822
.

Files

Files Size Format View
CzechMathJ_61-2011-3_8.pdf 313.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo