Previous |  Up |  Next

Article

Title: Congruence kernels of distributive PJP-semilattices (English)
Author: Begum, S. N.
Author: Noor, A. S. A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 3
Year: 2011
Pages: 225-239
Summary lang: English
.
Category: math
.
Summary: A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices. (English)
Keyword: semilattice
Keyword: distributivity
Keyword: pseudocomplementation
Keyword: congruence
Keyword: kernel ideal
Keyword: cokernel
MSC: 06A12
MSC: 06B10
MSC: 06B99
MSC: 06D15
idZBL: Zbl 1249.06004
idMR: MR2893973
DOI: 10.21136/MB.2011.141645
.
Date available: 2011-09-22T14:54:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141645
.
Reference: [1] Begum, S. N., Noor, A. S. A.: Some characterizations of modular and distributive JP-semilattices.Submitted.
Reference: [2] Blyth, T. S.: Ideals and filters of pseudo-complemented semilattices.Proc. Edinb. Math. Soc., II. Ser. 23 (1980), 301-316. Zbl 0484.06004, MR 0620927, 10.1017/S0013091500003850
Reference: [3] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 45 (2006), 43-52. MR 2321296
Reference: [4] Chajda, I., Kolařík, M.: A decomposition of homomorphic images of near lattices.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 45 (2006), 43-52. MR 2321296
Reference: [5] Chajda, I., Kolařík, M.: Nearlattices.Discrete Math. 308 (2008), 4906-4913. Zbl 1151.06004, MR 2446101, 10.1016/j.disc.2007.09.009
Reference: [6] Cornish, W. H.: Congruence on distributive pseudo-complemented lattices.Bull. Austral. Math. Soc. 82 (1973), 161-179. MR 0318024, 10.1017/S0004972700042404
Reference: [7] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices.Acta Math. Acad. Sci. Hungar. 32 (1978), 5-16. Zbl 0497.06005, MR 0551490, 10.1007/BF01902195
Reference: [8] Cornish, W. H., Noor, A. S. A.: Standard elements in a nearlattice.Bull. Austral. Math. Soc. 26 (1982), 185-213. Zbl 0523.06006, MR 0683652, 10.1017/S0004972700005700
Reference: [9] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices.Freeman (1971). MR 0321817
Reference: [10] Grätzer, G.: General Lattice Theory.Birkhäuser (1978). MR 0504338
Reference: [11] Hickman, R. C.: Distributivity in Semilattices.Ph.D. Thesis, The Flinders University of South Australia (1978). Zbl 0389.06003, MR 0551491
Reference: [12] Noor, A. S. A., Cornish, W. H.: Multipliers on a nearlattice.Comment Math. Univ. Carolin. 27 (1986), 815-827. Zbl 0605.06005, MR 0874675
Reference: [13] Murty, P. V. Ramana, Rao, V. V. Rama: Characterization of certain classes of pseudo complemented semi-lattices.Algebra Universalis 4 (1974), 289-300. MR 0366763, 10.1007/BF02485741
.

Files

Files Size Format View
MathBohem_136-2011-3_1.pdf 266.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo