Previous |  Up |  Next

Article

Title: A note on k-c-semistratifiable spaces and strong $\beta $-spaces (English)
Author: Wang, Li-Xia
Author: Peng, Liang-Xue
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 3
Year: 2011
Pages: 287-299
Summary lang: English
.
Category: math
.
Summary: Recall that a space $X$ is a c-semistratifiable (CSS) space, if the compact sets of $X$ are $G_\delta $-sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a $T_2$-space $X$ is a k-c-semistratifiable space if and only if $X$ has a $g$ function which satisfies the following conditions: (1) For each $x\in X$, $\{ x\}=\bigcap \{g(x, n)\colon n\in \mathbb {N}\}$ and $ g(x, n+1)\subseteq g(x, n)$ for each $n\in \mathbb {N}$. (2) If a sequence $\{x_n\}_{n\in \mathbb {N}}$ of $X$ converges to a point $x\in X$ and $y_n\in g(x_n, n)$ for each $n\in \mathbb {N}$, then for any convergent subsequence $\{y_{n_k}\}_{k\in \mathbb {N}}$ of $\{y_n\}_{n\in \mathbb {N}}$ we have that $\{y_{n_k}\}_{k\in \mathbb {N}}$ converges to $x$. By the above characterization, we show that if $X$ is a submesocompact locally k-c-semistratifiable space, then $X$ is a k-c-semistratifible space, and the countable product of k-c-semistratifiable spaces is a k-c-semistratifiable space. If $X=\bigcup \{{\rm Int}(X_n)\colon n\in \mathbb {N}\}$ and $X_n$ is a closed k-c-semistratifiable space for each $n$, then $X$ is a k-c-semistratifiable space. In the last part of this note, we show that if $X=\bigcup \{X_n\colon n\in \mathbb {N}\}$ and $X_n$ is a closed strong $\beta $-space for each $n\in \mathbb {N}$, then $X$ is a strong $\beta $-space. (English)
Keyword: c-semistratifiable space
Keyword: k-c-semistratifiable space
Keyword: submesocompact space
Keyword: $g$ function
Keyword: strong $\beta $-space
MSC: 54D20
MSC: 54E20
idZBL: Zbl 1249.54063
idMR: MR2893977
DOI: 10.21136/MB.2011.141650
.
Date available: 2011-09-22T14:58:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141650
.
Reference: [1] Bennett, H., Byerly, R., Lutzer, D.: Compact $G_\delta $ sets.Topology Appl. 153 (2006), 2169-2181. Zbl 1101.54034, MR 2239079, 10.1016/j.topol.2005.08.011
Reference: [2] Borges, C. R.: On stratifiable spaces.Pacific J. Math. 17 (1966), 1-16. Zbl 0175.19802, MR 0188982, 10.2140/pjm.1966.17.1
Reference: [3] Creede, G. D.: Concerning semi-stratifiable spaces.Pacific J. Math. 32 (1970), 47-54. Zbl 0189.23304, MR 0254799, 10.2140/pjm.1970.32.47
Reference: [4] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6, Heldermann, Berlin, revised ed. 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Gao, Z. M.: On $g$-function separation.Questions Answers Gen. Topology 4 (1986), 47-57. Zbl 0597.54027, MR 0852951
Reference: [6] Gao, Z. M.: The closed images of metric spaces and Fréchet $\aleph$-spaces.Questions Answers Gen. Topology 5 (1987), 281-291. Zbl 0643.54035, MR 0917886
Reference: [7] Good, C., Knight, R., Stares, I.: Monotone countable paracompactness.Topology Appl. 101 (2000), 281-298. Zbl 0938.54026, MR 1733809, 10.1016/S0166-8641(98)00128-X
Reference: [8] Gruenhage, G.: Generalized Metric Spaces. Handbook of Set-Theoretic Topology.North-Holland, Amsterdam (1984). MR 0776629
Reference: [9] Hodel, R. E.: Moore Spaces and $\omega\Delta$-spaces.Pacific J. Math. 38 (1971), 641-652. MR 0307169, 10.2140/pjm.1971.38.641
Reference: [10] Kemoto, N., Yajima, Y.: Certain sequences with compact closure.Topology Appl. 156 (2009), 1348-1354. Zbl 1169.54003, MR 2502009, 10.1016/j.topol.2008.12.016
Reference: [11] Kyung, B. L.: Spaces in which compacta are uniformly regular $G_\delta$.Pacific J. Math. 81 (1979), 435-446. MR 0547610, 10.2140/pjm.1979.81.435
Reference: [12] Lin, S.: A note on k-semistratifiable spaces.J. Suzhou University (Natural Science) 4 (1988), 357-363.
Reference: [13] Lin, S.: Generalized Metric Spaces and Mappings.Chinese Science Publishers, Beijing (1995). MR 1375020
Reference: [14] Lin, S.: Mapping theorems on k-semistratifiable spaces.Tsukuba J. Math. 21 (1997), 809-815. Zbl 1025.54501, MR 1603848, 10.21099/tkbjm/1496163383
Reference: [15] Lutzer, D. J.: Semimetrizable and stratifiable spaces.General Topology Appl. 1 (1971), 43-48. Zbl 0211.25704, MR 0296893, 10.1016/0016-660X(71)90109-7
Reference: [16] Martin, H. W.: Metrizability of $M$-spaces.Can. J. Math. 4 (1973), 840-841. Zbl 0247.54031, MR 0328875, 10.4153/CJM-1973-086-0
Reference: [17] Peng, L.-X., Wang, L. X.: On $ CSS$ spaces and related conclusions.Chinese Acta Math. Sci. (Chin. Ser. A) 30 (2010), 358-363. Zbl 1224.54065, MR 2664833
Reference: [18] Peng, L.-X., Lin, S.: Monotone spaces and metrization theorems.Chinese Acta Math. Sinica (Chin. Ser.) 46 (2003), 1225-1232. Zbl 1045.54010, MR 2035746
Reference: [19] Yajima, Y.: Strong $\beta$-spaces and their countable products.Houston J. Math. 33 (2007), 531-540. Zbl 1243.54046, MR 2308994
.

Files

Files Size Format View
MathBohem_136-2011-3_5.pdf 280.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo