Title:
|
A note on k-c-semistratifiable spaces and strong $\beta $-spaces (English) |
Author:
|
Wang, Li-Xia |
Author:
|
Peng, Liang-Xue |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
287-299 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Recall that a space $X$ is a c-semistratifiable (CSS) space, if the compact sets of $X$ are $G_\delta $-sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a $T_2$-space $X$ is a k-c-semistratifiable space if and only if $X$ has a $g$ function which satisfies the following conditions: (1) For each $x\in X$, $\{ x\}=\bigcap \{g(x, n)\colon n\in \mathbb {N}\}$ and $ g(x, n+1)\subseteq g(x, n)$ for each $n\in \mathbb {N}$. (2) If a sequence $\{x_n\}_{n\in \mathbb {N}}$ of $X$ converges to a point $x\in X$ and $y_n\in g(x_n, n)$ for each $n\in \mathbb {N}$, then for any convergent subsequence $\{y_{n_k}\}_{k\in \mathbb {N}}$ of $\{y_n\}_{n\in \mathbb {N}}$ we have that $\{y_{n_k}\}_{k\in \mathbb {N}}$ converges to $x$. By the above characterization, we show that if $X$ is a submesocompact locally k-c-semistratifiable space, then $X$ is a k-c-semistratifible space, and the countable product of k-c-semistratifiable spaces is a k-c-semistratifiable space. If $X=\bigcup \{{\rm Int}(X_n)\colon n\in \mathbb {N}\}$ and $X_n$ is a closed k-c-semistratifiable space for each $n$, then $X$ is a k-c-semistratifiable space. In the last part of this note, we show that if $X=\bigcup \{X_n\colon n\in \mathbb {N}\}$ and $X_n$ is a closed strong $\beta $-space for each $n\in \mathbb {N}$, then $X$ is a strong $\beta $-space. (English) |
Keyword:
|
c-semistratifiable space |
Keyword:
|
k-c-semistratifiable space |
Keyword:
|
submesocompact space |
Keyword:
|
$g$ function |
Keyword:
|
strong $\beta $-space |
MSC:
|
54D20 |
MSC:
|
54E20 |
idZBL:
|
Zbl 1249.54063 |
idMR:
|
MR2893977 |
DOI:
|
10.21136/MB.2011.141650 |
. |
Date available:
|
2011-09-22T14:58:43Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141650 |
. |
Reference:
|
[1] Bennett, H., Byerly, R., Lutzer, D.: Compact $G_\delta $ sets.Topology Appl. 153 (2006), 2169-2181. Zbl 1101.54034, MR 2239079, 10.1016/j.topol.2005.08.011 |
Reference:
|
[2] Borges, C. R.: On stratifiable spaces.Pacific J. Math. 17 (1966), 1-16. Zbl 0175.19802, MR 0188982, 10.2140/pjm.1966.17.1 |
Reference:
|
[3] Creede, G. D.: Concerning semi-stratifiable spaces.Pacific J. Math. 32 (1970), 47-54. Zbl 0189.23304, MR 0254799, 10.2140/pjm.1970.32.47 |
Reference:
|
[4] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6, Heldermann, Berlin, revised ed. 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[5] Gao, Z. M.: On $g$-function separation.Questions Answers Gen. Topology 4 (1986), 47-57. Zbl 0597.54027, MR 0852951 |
Reference:
|
[6] Gao, Z. M.: The closed images of metric spaces and Fréchet $\aleph$-spaces.Questions Answers Gen. Topology 5 (1987), 281-291. Zbl 0643.54035, MR 0917886 |
Reference:
|
[7] Good, C., Knight, R., Stares, I.: Monotone countable paracompactness.Topology Appl. 101 (2000), 281-298. Zbl 0938.54026, MR 1733809, 10.1016/S0166-8641(98)00128-X |
Reference:
|
[8] Gruenhage, G.: Generalized Metric Spaces. Handbook of Set-Theoretic Topology.North-Holland, Amsterdam (1984). MR 0776629 |
Reference:
|
[9] Hodel, R. E.: Moore Spaces and $\omega\Delta$-spaces.Pacific J. Math. 38 (1971), 641-652. MR 0307169, 10.2140/pjm.1971.38.641 |
Reference:
|
[10] Kemoto, N., Yajima, Y.: Certain sequences with compact closure.Topology Appl. 156 (2009), 1348-1354. Zbl 1169.54003, MR 2502009, 10.1016/j.topol.2008.12.016 |
Reference:
|
[11] Kyung, B. L.: Spaces in which compacta are uniformly regular $G_\delta$.Pacific J. Math. 81 (1979), 435-446. MR 0547610, 10.2140/pjm.1979.81.435 |
Reference:
|
[12] Lin, S.: A note on k-semistratifiable spaces.J. Suzhou University (Natural Science) 4 (1988), 357-363. |
Reference:
|
[13] Lin, S.: Generalized Metric Spaces and Mappings.Chinese Science Publishers, Beijing (1995). MR 1375020 |
Reference:
|
[14] Lin, S.: Mapping theorems on k-semistratifiable spaces.Tsukuba J. Math. 21 (1997), 809-815. Zbl 1025.54501, MR 1603848, 10.21099/tkbjm/1496163383 |
Reference:
|
[15] Lutzer, D. J.: Semimetrizable and stratifiable spaces.General Topology Appl. 1 (1971), 43-48. Zbl 0211.25704, MR 0296893, 10.1016/0016-660X(71)90109-7 |
Reference:
|
[16] Martin, H. W.: Metrizability of $M$-spaces.Can. J. Math. 4 (1973), 840-841. Zbl 0247.54031, MR 0328875, 10.4153/CJM-1973-086-0 |
Reference:
|
[17] Peng, L.-X., Wang, L. X.: On $ CSS$ spaces and related conclusions.Chinese Acta Math. Sci. (Chin. Ser. A) 30 (2010), 358-363. Zbl 1224.54065, MR 2664833 |
Reference:
|
[18] Peng, L.-X., Lin, S.: Monotone spaces and metrization theorems.Chinese Acta Math. Sinica (Chin. Ser.) 46 (2003), 1225-1232. Zbl 1045.54010, MR 2035746 |
Reference:
|
[19] Yajima, Y.: Strong $\beta$-spaces and their countable products.Houston J. Math. 33 (2007), 531-540. Zbl 1243.54046, MR 2308994 |
. |