Previous |  Up |  Next

Article

Title: Le minimum de deux fonctions plurisousharmoniques et une nouvelle caracterisation des fonctions holomorphes (French)
Title: The minimum of two plurisubharmonic functions and a new characterization of holomorphic functions (English)
Author: Abidi, Jamel
Author: Ben Yattou, Mohamed Lassaad
Language: French
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 3
Year: 2011
Pages: 301-310
Summary lang: English
.
Category: math
.
Summary: We prove, among other results, that $\min (u,v)$ is plurisubharmonic (psh) when $u,v$ belong to a family of functions in ${\rm psh}(D)\cap \Lambda _{\alpha }(D),$ where $\Lambda _{\alpha }(D)$ is the $\alpha $-Lipchitz functional space with $1<\alpha <2.$ Then we establish a new characterization of holomorphic functions defined on open sets of $\mathbb {C}^n.$ (English)
Keyword: maximum principle
Keyword: plurisubharmonic function
MSC: 32A10
MSC: 32D20
MSC: 32U05
MSC: 32U30
idZBL: Zbl 1249.32003
idMR: MR2893978
DOI: 10.21136/MB.2011.141651
.
Date available: 2011-09-22T15:00:20Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141651
.
Reference: [1] Abidi, J.: Sur le prolongement des fonctions harmoniques.Manuscripta Math. 105 (2001), 471-482. Zbl 1013.31002, MR 1858498, 10.1007/s002290100182
Reference: [2] Abidi, J.: Analycité, principe du maximum et fonctions plurisousharmoniques (à paraitre)..
Reference: [3] Carleson, L.: Selected Problems on Exceptional Sets.Van Nostrand, Princeton, N.J., 1967. (Reprint: Wadswarth, Belmont, Cal., 1983). Zbl 0505.00034, MR 0225986
Reference: [4] Cegrell, U.: Removable singularities for plurisubharmonic functions and related problems.Proc. Lond. Math. Soc. 36 (1978), 310-336. Zbl 0375.32013, MR 0484969, 10.1112/plms/s3-36.2.310
Reference: [5] Cegrell, U.: Removable singularity sets for analytic functions having modulus with bounded Laplace mass.Proc. Amer. Math. Soc. 88 (1983), 283-286. Zbl 0514.32011, MR 0695259, 10.1090/S0002-9939-1983-0695259-X
Reference: [6] Conway, J. B.: Functions of One Complex Variable II.Springer, Berlin (1995). Zbl 0887.30003, MR 1344449
Reference: [7] Federer, H.: Geometric Measure Theory.Springer, Berlin (1969). Zbl 0176.00801, MR 0257325
Reference: [8] Gunning, R. C., Rossi, H.: Analytic Functions of Several Complex Variables.Prentice-Hall, Englewood Cliffs (1965). Zbl 0141.08601, MR 0180696
Reference: [9] Harvey, R.: Removable singularities for positive currents.Amer. J. Math. 96 (1974), 67-78. Zbl 0293.32015, MR 0361156, 10.2307/2373581
Reference: [10] Harvey, R., Polking, J.: Extending analytic objects.Comm. Pure Appl. Math. 28 (1975), 701-727. MR 0409890, 10.1002/cpa.3160280603
Reference: [11] Hayman, W. K., Kennedy, P. B.: Subharmonic Functions.Academic Press (1976). Zbl 0323.32013
Reference: [12] Henkin, G. M., Leiterer, J.: Theory of Functions on Complex Manifolds.Birkhäuser, Boston, Mass. (1984). Zbl 0726.32001, MR 0774049
Reference: [13] Hervé, M.: Les fonctions analytiques.Presses Universitaires de France (1982). MR 0696576
Reference: [14] Hörmander, L.: An Introduction to Complex Analysis in Several Variables.Van Nostrand, Princeton, N.J. (1966). MR 0203075
Reference: [15] Hyvönen, J., Rühentaus, J.: On the extension in the Hardy classes and in the Nevanlinna class.Bull. Soc. Math. France 112 (1984), 469-480. MR 0802536, 10.24033/bsmf.2017
Reference: [16] Klimek, M.: Pluripotential Theory.Clarendon Press, Oxford (1991). Zbl 0742.31001, MR 1150978
Reference: [17] Krantz, S. G.: Function Theory of Several Complex Variables.Wiley, New York (1982). Zbl 0471.32008, MR 0635928
Reference: [18] Krantz, S. G.: Lipschitz spaces, smoothness of functions, and approximation theory.Expo. Math. 3 (1983), 193-260. Zbl 0518.46018, MR 0782608
Reference: [19] Lelong, P.: Fonctions plurisousharmoniques et formes différentielles positives.Gordon and Breach, New York (1969). MR 0243112
Reference: [20] O'Farrell, A. G.: The 1-reduction for removable singularities, and the negative Hölder spaces.Pro. R. Ir. Acad. A 88 (1988), 133-151. Zbl 0651.46041, MR 0986220
Reference: [21] Poletsky, E.: The minimum principle.Indiana Univ. Math. J. 51 (2003), 269-304. MR 1909290
Reference: [22] Range, R. M.: Holomorphic Functions and Integral Representations in Several Complex Variables.Springer, Berlin (1986). Zbl 0591.32002, MR 0847923
Reference: [23] Ransford, T.: Potential Theory in the Complex Plane.Cambridge University Press (1995). Zbl 0828.31001, MR 1334766
Reference: [24] Riihentaus, J.: On the extension of separately hyperharmonic functions and $H^{p}$-functions.Michigan Math. J. 31 (1984), 99-112. MR 0736475, 10.1307/mmj/1029002968
Reference: [25] Ronkin, L. I.: Introduction to the theory of entire functions of several variables.Amer. Math. Soc., Providence, RI (1974). Zbl 0286.32004, MR 0346175
Reference: [26] Rudin, W.: Function Theory in Polydiscs.Benjamin, New York (1969). Zbl 0177.34101, MR 0255841
Reference: [27] Rudin, W.: Function Theory in the Unit Ball of $\mathbb{C}^n$.Springer, New York (1980). MR 0601594
Reference: [28] Shiffman, B.: On the removal of singularities of analytic sets.Michigan Math. J. 15 (1968), 111-120. Zbl 0165.40503, MR 0224865, 10.1307/mmj/1028999912
Reference: [29] Ullrich, D. C.: Removable sets for harmonic functions.Michigan Math. J. 38 (1991), 467-473. Zbl 0751.31001, MR 1116502, 10.1307/mmj/1029004395
Reference: [30] Verdera, J.: Approximation by solutions of elliptic equations, and Calderon-Zygmund operators.Duke Math. J. 55 (1987), 157-187. Zbl 0654.35007, MR 0883668, 10.1215/S0012-7094-87-05509-8
Reference: [31] Vladimirov, V. S.: Les fonctions de plusieurs variables complexe (et leur application à la théorie quantique des champs).Dunod, Paris (1967). MR 0218608
.

Files

Files Size Format View
MathBohem_136-2011-3_6.pdf 264.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo