Previous |  Up |  Next

Article

Title: Several examples of nonholonomic mechanical systems (English)
Author: Swaczyna, Martin
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 19
Issue: 1
Year: 2011
Pages: 27-56
Summary lang: English
.
Category: math
.
Summary: A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the constraint submanifold) are presented. Finally, solvability of these equations is discussed and general solutions in explicit form are found. (English)
Keyword: Lagrangian system
Keyword: constraints
Keyword: nonholonomic constraints
Keyword: constraint submanifold
Keyword: canonical distribution
Keyword: nonholonomic constraint structure
Keyword: nonholonomic constrained system
Keyword: reduced equations of motion (without Lagrange multipliers)
Keyword: Chetaev equations of motion (with Lagrange multipliers)
MSC: 37J60
MSC: 70F25
MSC: 70G45
MSC: 70G75
MSC: 70H30
idZBL: Zbl 06010914
idMR: MR2855390
.
Date available: 2011-10-31T08:13:31Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141678
.
Reference: [1] Bloch, A.M.: Nonholonomic Mechanics and Control.Springer Verlag, New York 2003 Zbl 1045.70001, MR 1978379
Reference: [2] Brdička, M., Hladík, A.: Theoretical Mechanics.Academia, Praha 1987 (in Czech) MR 0934921
Reference: [3] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems.Springer Verlag, New York, Heidelberg, Berlin 2004 MR 2099139
Reference: [4] Cardin, F., Favreti, M.: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints.J. Geom. Phys. 18 1996 295–325 MR 1383219, 10.1016/0393-0440(95)00016-X
Reference: [5] Cariñena, J.F., Rañada, M.F.: Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers.J. Phys. A: Math. Gen. 26 1993 1335–1351 MR 1212006, 10.1088/0305-4470/26/6/016
Reference: [6] Cortés, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems.Lecture Notes in Mathematics 1793, Springer, Berlin 2002 Zbl 1009.70001, MR 1942617
Reference: [7] Cortés, J., León, M. de, Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids.Discrete Contin. Dyn. Syst. A 24 2009 213–271 Zbl 1161.70336, MR 2486576, 10.3934/dcds.2009.24.213
Reference: [8] León, M. de, Marrero, J.C., Diego, D.M. de: Non-holonomic Lagrangian systems in jet manifolds.J. Phys. A: Math. Gen. 30 1997 1167–1190 MR 1449273, 10.1088/0305-4470/30/4/018
Reference: [9] León, M. de, Marrero, J.C., Diego, D.M. de: Mechanical systems with nonlinear constraints.Int. Journ. Theor. Phys. 36, No.4 1997 979–995 MR 1445410, 10.1007/BF02435796
Reference: [10] Giachetta, G.: Jet methods in nonholonomic mechanics.J. Math. Phys. 33 1992 1652–1655 Zbl 0758.70010, MR 1158984, 10.1063/1.529693
Reference: [11] Janová, J.: A Geometric theory of mechanical systems with nonholonomic constraints.Thesis, Faculty of Science, Masaryk University, Brno, 2002 (in Czech)
Reference: [12] Janová, J., Musilová, J.: Non-holonomic mechanics mechanics: A geometrical treatment of general coupled rolling motion.Int. J. Non-Linear Mechanics 44 2009 98–105 10.1016/j.ijnonlinmec.2008.09.002
Reference: [13] Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic system.Reports on Mat. Phys. 40 1997 21–62 MR 1492413, 10.1016/S0034-4877(97)85617-0
Reference: [14] Krupková, O.: Mechanical systems with nonholonomic constraints.J. Math. Phys. 38 1997 5098–5126 MR 1471916, 10.1063/1.532196
Reference: [15] Krupková, O.: On the geometry of non-holonomic mechanical systems., O. Kowalski, I. Kolář, D. Krupka, J. Slovák (eds.)Proc. Conf. Diff. Geom. Appl., Brno, August 1998 Masaryk University, Brno 1999 533-546 MR 1708942
Reference: [16] Krupková, O.: Recent results in the geometry of constrained systems.Rep. Math. Phys. 49 2002 269–278 Zbl 1018.37041, MR 1915806, 10.1016/S0034-4877(02)80025-8
Reference: [17] Krupková, O.: The nonholonomic variational principle.J. Phys. A: Math. Theor. 42 2009 No. 185201 Zbl 1198.70008, MR 2591195, 10.1088/1751-8113/42/18/185201
Reference: [18] Krupková, O.: Geometric mechanics on nonholonomic submanifolds.Communications in Mathematics 18 2010 51–77 Zbl 1248.70018, MR 2848506
Reference: [19] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with nonlinear constraints.J. Phys. A: Math. Gen. 34 2001 3859–3875 10.1088/0305-4470/34/18/313
Reference: [20] Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry.Texts in Applied Mathematics 17, Springer Verlag, New York 1999 2nd ed. Zbl 0933.70003, MR 1723696
Reference: [21] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems.Ann. Inst. Henri Poincaré 66 1997 1–36 Zbl 0878.70009, MR 1434114
Reference: [22] Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems.Translations of Mathematical Monographs 33, American Mathematical Society, Rhode Island 1972 Zbl 0245.70011
Reference: [23] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems.J. Phys. A: Math. Gen. 28 1995 3253–3268 Zbl 0858.70013, MR 1344117, 10.1088/0305-4470/28/11/022
Reference: [24] Swaczyna, M.: On the nonholonomic variational principle., K. Tas, D. Krupka, O.Krupková, D. Baleanu (eds.)Proc. of the International Workshop on Global Analysis, Ankara, 2004 AIP Conference Proceedings, Vol. 729, Melville, New York 2004 297–306 Zbl 1113.70016, MR 2215712
Reference: [25] Swaczyna, M.: Variational aspects of nonholonomic mechanical systems.Ph.D. Thesis, Faculty of Science, Palacky University, Olomouc, 2005
Reference: [26] Tichá, M.: Mechanical systems with nonholonomic constraints.Thesis, Faculty of Science, University of Ostrava, Ostrava, 2004 (in Czech)
Reference: [27] Volný, P.: Nonholonomic systems.Ph.D. Thesis, Faculty of Science, Palacky University, Olomouc, 2004
.

Files

Files Size Format View
ActaOstrav_19-2011-1_3.pdf 520.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo