Previous |  Up |  Next

Article

Title: Gradient estimates for a nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ on complete noncompact manifolds (English)
Author: Zhang, Jing
Author: Ma, Bingqing
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 19
Issue: 1
Year: 2011
Pages: 73-84
Summary lang: English
.
Category: math
.
Summary: Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ in $M$, where $\alpha$, $c$ are two real constants and $\alpha>0$, $f$ is a smooth real valued function on $M$ and $\Delta_f=\Delta-\nabla f\nabla$. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty$-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^{-\alpha}=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182]. (English)
Keyword: gradient estimates
Keyword: positive solution
Keyword: Bakry-Emery Ricci tensor
MSC: 35J60
MSC: 58J05
idZBL: Zbl 1242.58011
idMR: MR2855392
.
Date available: 2011-10-31T08:15:31Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141680
.
Reference: [1] Calabi, E.: An extension of E.Hopf’s maximum principle with application to Riemannian geometry.Duke Math. J. 25 1957 45–46 MR 0092069, 10.1215/S0012-7094-58-02505-5
Reference: [2] Chen, L., Chen, W.Y.: Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds.Ann. Glob. Anal. Geom. 35 2009 397–404 Zbl 1177.35040, MR 2506242, 10.1007/s10455-008-9141-9
Reference: [3] Chen, L., Chen, W.Y.: Gradient estimates for positive smooth $f$-harmonic functions.Acta Math. Sci. 30(B) 2010 1614–1618 Zbl 1240.58019, MR 2778630
Reference: [4] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications.Commun. Pure. Appl. Math. 28 1975 333–354 Zbl 0312.53031, MR 0385749, 10.1002/cpa.3160280303
Reference: [5] Guo, Z.M., Wei, J.C.: Hausdorff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity.Manuscripta Math. 120 2006 193–209 MR 2234248, 10.1007/s00229-006-0001-2
Reference: [6] Hsu, S.Y.: Gradient estimates for a nonlinear parabolic equation under Ricci.arXiv: 0806.4004
Reference: [7] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.Arch. Math. (Basel) 94 2010 265–275 Zbl 1194.58020, MR 2602453, 10.1007/s00013-009-0091-7
Reference: [8] Li, J.Y.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds.J. Funct. Anal. 100 1991 233–256 Zbl 0746.58078, MR 1125225, 10.1016/0022-1236(91)90110-Q
Reference: [9] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds.J. Math. Pures Appl. 84 2005 1295–1361 Zbl 1082.58036, MR 2170766
Reference: [10] Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds.J. Funct. Anal. 241 2006 374–382 Zbl 1112.58023, MR 2264255, 10.1016/j.jfa.2006.06.006
Reference: [11] Ma, L., Liu, B.Y.: Convexity of the first eigenfunction of the drifting Laplacian operator and its applications.New York J. Math. 14 2008 393–401 Zbl 1156.35065, MR 2443979
Reference: [12] Ma, L., Liu, B.Y.: Convex eigenfunction of a drifting Laplacian operator and the fundamental gap.Pacific J. Math. 240 2009 343–361 Zbl 1162.35059, MR 2485469, 10.2140/pjm.2009.240.343
Reference: [13] Qian, Z.M.: A comparison theorem for an elliptic operator.Potential Analysis 8 1998 137–142 Zbl 0930.58012, MR 1618434, 10.1023/A:1008698923961
Reference: [14] Wei, G.F., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor.J. Differential Geometry 83 2009 377–405 Zbl 1189.53036, MR 2577473
Reference: [15] Yang, Y.Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.Proc. Amer. Math. Soc. 136 2008 4095–4102 Zbl 1151.58013, MR 2425752, 10.1090/S0002-9939-08-09398-2
Reference: [16] Yang, Y.Y.: Gradient estimates for the equation $\Delta u+cu^{-\alpha }=0$ on Riemannian manifolds.Acta. Math. Sin. 26(B) 2010 1177–1182 Zbl 1203.58006, MR 2644055, 10.1007/s10114-010-7531-y
.

Files

Files Size Format View
ActaOstrav_19-2011-1_5.pdf 512.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo