Previous |  Up |  Next

Article

Title: Computational studies of non-local anisotropic Allen-Cahn equation (English)
Author: Beneš, Michal
Author: Yazaki, Shigetoshi
Author: Kimura, Masato
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 4
Year: 2011
Pages: 429-437
Summary lang: English
.
Category: math
.
Summary: The paper presents the results of numerical solution of the Allen-Cahn equation with a non-local term. This equation originally mentioned by Rubinstein and Sternberg in 1992 is related to the mean-curvature flow with the constraint of constant volume enclosed by the evolving curve. We study this motion approximately by the mentioned PDE, generalize the problem by including anisotropy and discuss the computational results obtained. (English)
Keyword: Allen-Cahn equation
Keyword: phase transitions
Keyword: mean-curvature flow
Keyword: finite-difference method
MSC: 35K57
MSC: 35K65
MSC: 53C80
MSC: 65N40
idZBL: Zbl 1249.35153
idMR: MR2985552
DOI: 10.21136/MB.2011.141702
.
Date available: 2011-11-10T15:54:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141702
.
Reference: [1] Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equation and nucleation.IMA J. Appl. Math. (1992), 48 249-264. MR 1167735, 10.1093/imamat/48.3.249
Reference: [2] Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.Acta Metall. (1979), 27 1084-1095.
Reference: [3] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system {III}. Nucleation of a two-component incompressible fluid.J. Chem. Phys. (1959), 31 688-699. 10.1063/1.1730447
Reference: [4] Taylor, J. E., Cahn, J. W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows.J. Statist. Phys. (1994), 77 183-197. Zbl 0844.35044, MR 1300532, 10.1007/BF02186838
Reference: [5] Bronsard, L., Kohn, R.: Motion by mean curvature as the singular limit of Ginzburg-{L}andau dynamics.J. Differential Equations (1991), 90 211-237. Zbl 0735.35072, MR 1101239, 10.1016/0022-0396(91)90147-2
Reference: [6] Bronsard, L., Stoth, B.: Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-{L}andau equation.SIAM J. Math. Anal. (1997), 28 769-807. Zbl 0874.35009, MR 1453306, 10.1137/S0036141094279279
Reference: [7] Beneš, M.: Diffuse-interface treatment of the anisotropic mean-curvature flow.Appl. Math., Praha (2003), 48 437-453. Zbl 1099.53044, MR 2025297, 10.1023/B:APOM.0000024485.24886.b9
Reference: [8] Beneš, M.: Mathematical and computational aspects of solidification of pure substances.Acta Math. Univ. Comenian. (2001), 70 123-152. Zbl 0990.80006, MR 1865364
.

Files

Files Size Format View
MathBohem_136-2011-4_9.pdf 764.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo