Title:
|
Spectrum of the weighted Laplace operator in unbounded domains (English) |
Author:
|
Filinovskiy, Alexey |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
136 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
415-427 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the spectral properties of the differential operator $-r^s \Delta $, $s\ge 0$ with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm $\|u\|^2_{L_{2, s} (\Omega )}= \int _{\Omega } r^{-s} |u|^2 {\rm d} x $, we study the structure of the spectrum with respect to the parameter $s$. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous. (English) |
Keyword:
|
Laplace operator |
Keyword:
|
multiplicative perturbation |
Keyword:
|
Dirichlet problem |
Keyword:
|
Friedrichs extension |
Keyword:
|
purely discrete spectra |
Keyword:
|
purely continuous spectra |
MSC:
|
35J15 |
MSC:
|
35J20 |
MSC:
|
35J25 |
MSC:
|
35P05 |
MSC:
|
35P15 |
idZBL:
|
Zbl 1249.35076 |
idMR:
|
MR2985551 |
DOI:
|
10.21136/MB.2011.141701 |
. |
Date available:
|
2011-11-10T15:53:48Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141701 |
. |
Reference:
|
[1] T., Lewis R.: Singular elliptic operators of second order with purely discrete spectra.Trans. Am. Math. Soc. 271 (1982), 653-666. Zbl 0507.35069, MR 0654855, 10.1090/S0002-9947-1982-0654855-X |
Reference:
|
[2] M., Eidus D.: The perturbed Laplace operator in a weighted $L\sp 2$-space.J. Funct. Anal. 100 (1991), 400-410. Zbl 0762.35020, MR 1125232, 10.1016/0022-1236(91)90117-N |
Reference:
|
[3] A., Ladyzhenskaya O., N., Uraltseva N.: Linear and Quasilinear Equations of Elliptic Type.Second edition, revised. Nauka, Moskva (1973), 576 Russian. MR 0509265 |
Reference:
|
[4] M., Glazman I.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators.Oldbourne Press, London (1965), 234. Zbl 0143.36505, MR 0190800 |
Reference:
|
[5] A., Berezin F., A., Shubin M.: The Schrodinger Equation.Moskov. Gos. Univ., Moskva (1983), 392 Russian. MR 0739327 |
Reference:
|
[6] M., Abramowitz, I.A., Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables.Dover Publications (1964), 1058. Zbl 0171.38503, MR 1225604 |
Reference:
|
[7] M., Landis E.: On some properties of solutions of elliptic equations.Dokl. Akad. Nauk SSSR 107 (1956), 640-643 Russian. Zbl 0075.28201, MR 0078557 |
. |