Previous |  Up |  Next

Article

Title: Spectrum of the weighted Laplace operator in unbounded domains (English)
Author: Filinovskiy, Alexey
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 136
Issue: 4
Year: 2011
Pages: 415-427
Summary lang: English
.
Category: math
.
Summary: We investigate the spectral properties of the differential operator $-r^s \Delta $, $s\ge 0$ with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm $\|u\|^2_{L_{2, s} (\Omega )}= \int _{\Omega } r^{-s} |u|^2 {\rm d} x $, we study the structure of the spectrum with respect to the parameter $s$. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous. (English)
Keyword: Laplace operator
Keyword: multiplicative perturbation
Keyword: Dirichlet problem
Keyword: Friedrichs extension
Keyword: purely discrete spectra
Keyword: purely continuous spectra
MSC: 35J15
MSC: 35J20
MSC: 35J25
MSC: 35P05
MSC: 35P15
idZBL: Zbl 1249.35076
idMR: MR2985551
DOI: 10.21136/MB.2011.141701
.
Date available: 2011-11-10T15:53:48Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/141701
.
Reference: [1] T., Lewis R.: Singular elliptic operators of second order with purely discrete spectra.Trans. Am. Math. Soc. 271 (1982), 653-666. Zbl 0507.35069, MR 0654855, 10.1090/S0002-9947-1982-0654855-X
Reference: [2] M., Eidus D.: The perturbed Laplace operator in a weighted $L\sp 2$-space.J. Funct. Anal. 100 (1991), 400-410. Zbl 0762.35020, MR 1125232, 10.1016/0022-1236(91)90117-N
Reference: [3] A., Ladyzhenskaya O., N., Uraltseva N.: Linear and Quasilinear Equations of Elliptic Type.Second edition, revised. Nauka, Moskva (1973), 576 Russian. MR 0509265
Reference: [4] M., Glazman I.: Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators.Oldbourne Press, London (1965), 234. Zbl 0143.36505, MR 0190800
Reference: [5] A., Berezin F., A., Shubin M.: The Schrodinger Equation.Moskov. Gos. Univ., Moskva (1983), 392 Russian. MR 0739327
Reference: [6] M., Abramowitz, I.A., Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables.Dover Publications (1964), 1058. Zbl 0171.38503, MR 1225604
Reference: [7] M., Landis E.: On some properties of solutions of elliptic equations.Dokl. Akad. Nauk SSSR 107 (1956), 640-643 Russian. Zbl 0075.28201, MR 0078557
.

Files

Files Size Format View
MathBohem_136-2011-4_8.pdf 280.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo