Previous |  Up |  Next

Article

Title: Sets Expressible as Unions of Staircase $n$-Convex Polygons (English)
Author: Breen, Marilyn
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 1
Year: 2011
Pages: 23-28
Summary lang: English
.
Category: math
.
Summary: Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$. (English)
Keyword: orthogonal polygons
Keyword: staircase $n$-convex polygons
MSC: 52A35
idZBL: Zbl 1244.52009
idMR: MR2920696
.
Date available: 2011-12-08T09:44:56Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141719
.
Reference: [1] Breen, M.: A Helly theorem for intersections of sets starshaped via staircase $n$-paths. Ars Combinatoria 78 (2006), 47–63. Zbl 1157.52303, MR 2194749
Reference: [2] Breen, M.: Intersections and unions of orthogonal polygons starshaped via staircase $n$-paths. Monatsh. Math. 148 (2006), 91–100. Zbl 1134.52007, MR 2235357, 10.1007/s00605-005-0345-9
Reference: [3] Breen, M.: Staircase $k$-kernels for orthogonal polygons. Arch. Math. 63 (1994), 182–190. Zbl 0742.52006, MR 1289301, 10.1007/BF01189893
Reference: [4] Breen, M.: Unions of orthogonally convex or orthogonally starshaped polygons.. Geometriae Dedicata 53 (1994), 49–56. Zbl 0814.52002, MR 1299884, 10.1007/BF01264043
Reference: [5] Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Convexity, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 7 (1962), 101–180. MR 0157289, 10.1090/pspum/007/0157289
Reference: [6] Eckhoff, J.: Helly, Radon, and Carathéodory type theorems. In: Gruber, P. M., Wills, J. M., (eds.) Handbook of Convex Geometry, vol. A, North Holland, New York (1993), 389–448. Zbl 0791.52009, MR 1242986
Reference: [7] Hare, W. R., Jr., Kenelly, J. W.: Sets expressible as unions of two convex sets. Proc. Amer. Math. Soc. 25 (1970), 379–380. Zbl 0195.51603, MR 0257879, 10.1090/S0002-9939-1970-0257879-7
Reference: [8] Lawrence, J. F., Hare, W. R., Jr., Kenelly, J. W.: Finite unions of convex sets. Proc. Amer. Math. Soc. 34 (1972), 225–228. Zbl 0237.52001, MR 0291952, 10.1090/S0002-9939-1972-0291952-4
Reference: [9] Lay, S. R.: Convex Sets and Their Applications. John Wiley, New York, 1982. Zbl 0492.52001, MR 0655598
Reference: [10] McKinney, R. L.: On unions of two convex sets. Canad. J. Math 18 (1966), 883–886. Zbl 0173.15305, MR 0202049, 10.4153/CJM-1966-088-7
Reference: [11] Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star polygons: the perfect graph approach. J. Comput. Syst. Sci. 40 (1990), 19–48. Zbl 0705.68082, MR 1047288, 10.1016/0022-0000(90)90017-F
Reference: [12] Valentine, F. A.: Convex Sets. McGraw-Hill, New York, 1964. Zbl 0129.37203, MR 0170264
.

Files

Files Size Format View
ActaOlom_50-2011-1_3.pdf 205.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo