Previous |  Up |  Next

Article

Title: On Weakly $W_3$-Symmetric Manifolds (English)
Author: Hui, Shyamal Kumar
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 1
Year: 2011
Pages: 53-71
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study weakly $W_3$-symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly $W_3$-symmetric manifold both the decompositions are weakly Ricci symmetric. (English)
Keyword: weakly $W_3$-symmetric manifold
Keyword: $W_3$-curvature tensor
Keyword: decomposable manifold
Keyword: scalar curvature
Keyword: totally umbilical hypersurfaces
Keyword: totally geodesic
Keyword: mean curvature
MSC: 53B05
MSC: 53B35
MSC: 53C15
MSC: 53C25
idZBL: Zbl 1252.53020
idMR: MR2920699
.
Date available: 2011-12-08T09:49:52Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141720
.
Reference: [1] Altay, S.: Some applications on weakly pseudosymmetric Riemannian manifolds. Diff. Geom. Dyn. Syst. 7 (2005), 1–10. MR 2141667
Reference: [2] Binh, T. Q.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 42 (1993), 103–107. Zbl 0797.53041, MR 1208855
Reference: [3] Cartan, E.: Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54 (1926), 214–264. MR 1504900
Reference: [4] Chaki, M. C.: On pseudo-symmetric manifolds. An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. Zbl 0634.53012, MR 0925690
Reference: [5] Chaki, M. C.: On generalized pseudo-symmetric manifolds. Publ. Math. Debrecen 45 (1994), 305–312.
Reference: [6] Chen, B. Y.: Geometry of submanifolds. Marcel-Deker, New York, 1973. Zbl 0262.53036, MR 0353212
Reference: [7] De, U. C., Bandyopadhyay, S.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 54 (1999), 377–381. Zbl 0922.53018, MR 1694492
Reference: [8] Deszcz R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A 44, 1 (1992), 1–34. Zbl 0808.53012, MR 1315367
Reference: [9] Eisenhart, L. P.: Riemannian Geometry. Princeton University Press, Princeton, 1949. Zbl 0041.29403, MR 0035081
Reference: [10] Hui, S. K., Matsuyama, Y., Shaikh, A. A.: On decomposable weakly conformally symmetric manifolds. Acta Math. Hungar. 128, 1-2 (2010), 82–95. Zbl 1224.53057, MR 2665800
Reference: [11] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).
Reference: [12] Mikeš, J.: Geodesic mappings of special Riemannian spaces. In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. MR 0933875
Reference: [13] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [14] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric affinely connected spaces. Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). MR 1165335
Reference: [15] Özen, F., Altay, S.: On weakly and pseudo symmetric Riemannian spaces. Indian J. Pure Appl. Math. 33, 10 (2001), 1477–1488. MR 1941070
Reference: [16] Özen, F., Altay, S.: On weakly and pseudo concircular symmetric structures on a Riemannian manifold. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 47 (2008), 129–138. Zbl 1184.53022, MR 2482723
Reference: [17] Pokhariyal, G. P.: Curvature tensors and their relativistic significance III. Yokohama Math. J. 21 (1973), 115–119. Zbl 0291.53011, MR 0465066
Reference: [18] Prvanović, M.: On weakly symmetric Riemmanian manifolds. Publ. Math. Debrecen 46 (1995), 19–25.
Reference: [19] Roter, W.: On conformally symmetric Ricci recurrent space. Colloq. Math. 31 (1974), 87–96. MR 0372768
Reference: [20] Schouten, J. A.: Ricci-Calculus, An introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin, 1954. Zbl 0057.37803, MR 0066025
Reference: [21] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. Zbl 0072.08201, MR 0088511
Reference: [22] Shaikh, A. A., Baishya, K. K.: On weakly quasi-conformally symmetric manifolds. Soochow J. Math. 31, 4 (2005), 581–595. Zbl 1091.53017, MR 2190202
Reference: [23] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N. S. 70 (2008), 119–134. Zbl 1193.53115, MR 2546909
Reference: [24] Shaikh, A. A., Hui, S. K.: On weakly concircular symmetric manifolds. Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. Zbl 1199.53057, MR 2510720
Reference: [25] Shaikh, A. A., Hui, S. K.: On weakly projective symmetric manifolds. Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. Zbl 1224.53039, MR 2570946
Reference: [26] Shaikh, A. A., Hui, S. K.: On decomposable weakly conharmonically symmetric manifolds. Lobachevski J. Math. 29, 4 (2008), 206–215. Zbl 1167.53305, MR 2461622, 10.1134/S1995080208040021
Reference: [27] Shaikh, A. A., Jana, S. K.: On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen. 71 (2007), 27–41. Zbl 1136.53019, MR 2340032
Reference: [28] Shaikh, A. A., Jana, S. K.: On weakly quasi-conformally symmetric manifolds. SUT. J. Math. 43, 1 (2007), 61–83. Zbl 1139.53008, MR 2417157
Reference: [29] Shaikh, A. A., Jana, S. K, Eyasmin, S.: On weakly pseudo quasi-conformally symmetric manifolds. Indian J. Math. 50, 3 (2008), 505–518. Zbl 1167.53023, MR 2483698
Reference: [30] Shaikh, A. A., Roy, I., Hui, S. K.: On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces. Global J. Science Frontier Research 10, 4 (2010), 28–30.
Reference: [31] Shaikh, A. A., Shahid, M. H., Hui, S. K.: On weakly conformally symmetric manifolds. Matematiki Vesnik 60 (2008), 269–284. Zbl 1224.53033, MR 2465809
Reference: [32] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979, (in Russian). Zbl 0637.53020, MR 0552022
Reference: [33] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R = 0$, The local version. J. Diff. Geom. 17 (1982), 531–582. MR 0683165
Reference: [34] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. MR 1211691
Reference: [35] Tamássy, L., Binh, T. Q.: On weak symmetrics of Einstein and Sasakian manifolds. Tensor, N. S. 53 (1993), 140–148. MR 1455411
Reference: [36] Walker, A. G.: On Ruses spaces of recurrent curvature. Proc. London Math. Soc. 52 (1950), 36–64. MR 0037574
Reference: [37] Yano, K., Kon, M.: Structure on manifolds. World Scientific Publ., Singapore, 1984. MR 0794310
.

Files

Files Size Format View
ActaOlom_50-2011-1_6.pdf 290.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo